201 research outputs found

    Biomass-derived binderless fibrous carbon electrodes for ultrafast energy storage

    Get PDF
    The possibility of storing energy efficiently and sustainably at little cost is crucial to prevent climate change and the exhaustion of natural resources. In this work we demonstrate that interconnected and porous carbon fibers easily obtained from lignin exhibit ultrafast charge–discharge and excellent energy density and cyclability performances, to be used as binderless and flexible electrodes in supercapacitors.Financial support by the Spanish Ministerio de Economía y Competitividad, for the MAT2013-42007-P, P09-FQM-5156R, CTQ2012-36408, JCI2011-10566, JCI-2012-12664 and the joint Spanish-Japanese (PRI-PIBJP-2011-0766) projects, FEDER and the Junta de Andalucía is gratefully acknowledged

    Activation of electrospun lignin-based carbon fibers and their performance as self-standing supercapacitor electrodes

    Get PDF
    The production and activation of self-standing carbon electrodes from electrospun lignin fibers was analyzed in this work. Carbon microfibers were prepared at 900 °C from air-stabilized spun cloths by direct carbonization under inert atmosphere and with diluted O2. The modifications of the porosity and surface chemistry of the carbon fibers was also studied by adding H3PO4 in the lignin solution and using different oxygen partial pressures during activation. The presence of phosphoric acid not only increases the porosity development and the preparation yield, but also enhances the gravimetric capacitance of the electrodes. In addition, the activation in presence of oxygen increases the surface area and the generation of wider micropores. Microporous carbon fibers with surface areas as high as 2340 m2 g−1 were obtained using this method. The direct conformation of carbon fibers into binderless electrodes allows to achieve high-power rate capability supercapacitors. Activation in presence of oxygen can enhance up to 50% the energy storage of supercapacitors without compromising the power of the device (8.4 Wh kg−1 and Pmax of 47 kW kg−1). However, at high activation degrees, no further gain in energy density is observed due to the excessive widening of micropores, and the loss of electrical conductivity that increases the cell resistance, limiting the power capability of the device. The optimal results in terms of energy, power and durability are achieved combining low amounts of H3PO4 and mild activation with O2, confirming that electrospinning of lignin is a promising method for sustainable production of self-standing supercapacitor electrodes.We thank MICINN (RTI2018-097555-B-100 and RTI2018-095291-B-I00) for the financial support. F.J.G.M. gratefully acknowledges the assistance of MINECO through a research grant (PTA2015-11464-I)

    Sustainable Synthesis of Metal-Doped Lignin-Derived Electrospun Carbon Fibers for the Development of ORR Electrocatalysts

    Get PDF
    The aim of this work is to establish the Oxygen Reduction Reaction (ORR) activity of self-standing electrospun carbon fiber catalysts obtained from different metallic salt/lignin solutions. Through a single-step electrospinning technique, freestanding carbon fiber (CF) electrodes embedded with various metal nanoparticles (Co, Fe, Pt, and Pd), with 8–16 wt% loadings, were prepared using organosolv lignin as the initial material. These fibers were formed from a solution of lignin and ethanol, into which the metallic salt precursors were introduced, without additives or the use of toxic reagents. The resulting non-woven cloths were thermostabilized in air and then carbonized at 900 °C. The presence of metals led to varying degrees of porosity development during carbonization, improving the accessibility of the electrolyte to active sites. The obtained Pt and Pd metal-loaded carbon fibers showed high nanoparticle dispersion. The performance of the electrocatalyst for the oxygen reduction reaction was assessed in alkaline and acidic electrolytes and compared to establish which metals were the most suitable for producing carbon fibers with the highest electrocatalytic activity. In accordance with their superior dispersion and balanced pore size distribution, the carbon fibers loaded with 8 wt% palladium showed the best ORR activity, with onset potentials of 0.97 and 0.95 V in alkaline and acid media, respectively. In addition, this electrocatalyst exhibits good stability and selectivity for the four-electron energy pathway while using lower metal loadings compared to commercial catalysts.The authors would like to thank the PID2019-105923RB-I00 project funded by MCIN/AEI/10.13039/501100011033, the RTI2018-097555-B-I00 project funded by MICINN and EFRD, and the Generalitat Valenciana (GRISOLIA/2020/114) for the financial support

    Influence of denitrifiers abundance on N2O emissions in long term tillage system under a rainfed legume crop

    Get PDF
    Current studies about nitrous oxide (N2O) emissions from legume crops have raised considerable doubt, observing a high variability between sites (0.03-7.09 kg N2O–N ha−1 y -1) [1]. This high variability has been associated to climate and soil conditions, legume species and soil management practices (e.g. conservation or conventional tillage). Conservation tillage (i.e. no tillage (NT) and minimum tillage (MT)) has spread during the last decades because promotes several positive effects (increase of soil organic content, reduction of soil erosion and enhancement of carbon (C) sequestration). However, these benefits could be partly counterbalanced by negative effects on the release of N2O emissions. Among processes responsible for N2O production and consumption in soils, denitrification plays an importantrole both in tilled and no-tilled ropping systems [2]. Recently, amplification of functional bacterial genes involved in denitrification is being used to examine denitrifiers abundance and evaluate their influence on N2O emissions. NirK and nirS are functional genes encoding the cytochrome cd1 and copper nitrite reductase, which is the key enzyme regulating the denitrification process

    Aged but withstanding: Maintenance of growth rates in old pines is not related to enhanced water-use efficiency

    Get PDF
    Growth of old trees in cold-limited forests may benefit from recent climate warming and rising atmospheric CO2 concentrations (ca) if age-related constraints do not impair wood formation. To test this hypothesis, we studied old Mountain pine trees at three Pyrenean high-elevation forests subjected to cold-wet (ORD, AIG) or warmer-drier (PED) conditions. We analyzed long-term trends (1450–2008) in growth (BAI, basal area increment), maximum (MXD) and minimum (MID) wood density, and tree-ring carbon (ή13C) and oxygen (ή18O) isotope composition, which were used as proxies for intrinsic water-use efficiency (iWUE) and stomatal conductance (gs), respectively. Old pines showed positive (AIG and ORD) or stable (PED) growth trends during the industrial period (since 1850) despite being older than 400 years. Growth and wood density covaried from 1850 onwards. In the cold-wet sites (AIG and ORD) enhanced photosynthesis through rising ca was likely responsible for the post-1850 iWUE improvement. However, uncoupling between BAI and iWUE indicated that increases in iWUE were not responsible for the higher growth but climate warming. A reduction in gs was inferred from increased ή18O for PED trees from 1960 onwards, the warmest site where the highest iWUE increase occurred (34%). This suggests that an emergent drought stress at warm-dry sites could trigger stomatal closure to avoid excessive transpiration. Overall, carbon acquisition as lasting woody pools is expected to be maintained in aged trees from cold and high-elevation sites where old forests constitute unique long-term carbon reservoirs.We are very grateful to several projects financed by “Organismo Autónomo de Parques Nacionales” (projects 12/2008 387/2011). E.G. was funded by a Juan de la Cierva post-doctoral research contract (FJCI-2014-19615, MEC, Spain). Spanish (AMB95-0160, CGL2011-26654) and EU projects ISONET (contract EV K2-2001-00237) and MILLENNIUM (017008–2) also supported this study by contributing additional datasets

    What drives growth of Scots pine in continental Mediterranean climates: drought, low temperatures or both?

    Get PDF
    Scots pine forests subjected to continental Mediterranean climates undergo cold winter temperatures and drought stress. Recent climatic trends towards warmer and drier conditions across the Mediterranean Basin might render some of these pine populations more vulnerable to drought-induced growth decline at the Southernmost limit of the species distribution. We investigated how cold winters and dry growing seasons drive the radial growth of Scots pine subject to continental Mediterranean climates by relating growth to climate variables at local (elevational gradient) and regional (latitudinal gradient) scales. Local climate-growth relationships were quantified on different time scales (5-, 10- and 15-days) to evaluate the relative role of elevation and specific site characteristics. A negative water balance driven by high maximum temperatures in June (low-elevation sites) and July (high-elevation sites) was the major constraint on growth, particularly on a 5- to 10-day time scale. Warm nocturnal conditions in January were associated with wider rings at the high-elevation sites. At the regional scale, Scots pine growth mainly responded positively to July precipitation, with a stronger association at lower elevations and higher latitudes. January minimum temperatures showed similar patterns but played a secondary role as a driver of tree growth. The balance between positive and negative effects of summer precipitation and winter temperature on radial growth depends on elevation and latitude, with low-elevation populations being more prone to suffer drought and heat stress; whereas, high-elevation populations may be favoured by warmer winter conditions. This negative impact of summer heat and drought has increased during the past decades. This interaction between climate and site conditions and local adaptations is therefore decisive for the future performance and persistence of Scots pine populations in continental Mediterranean climates. Forecasting changes in the Scots pine range due to climate change should include this site-related information to obtain more realistic predictions, particularly in Mediterranean rear-edge areas

    In-hospital outcomes of Infective Endocarditis from 1978 to 2015: analysis through machine-learning techniques

    Get PDF
    © 2021 The Authors. Published by Elsevier Inc. on behalf of the Canadian Cardiovascular Society. This is an open access article under the CC BY-NC- ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)Background: Early identification of patients with infective endocarditis (IE) at higher risk for in-hospital mortality is essential to guide management and improve prognosis. Methods: A retrospective analysis was conducted of a cohort of patients followed up from 1978 to 2015, classified according to the modified Duke criteria. Clinical parameters, echocardiographic data, and blood cultures were assessed. Techniques of machine learning, such as the classification tree, were used to explain the association between clinical characteristics and in-hospital mortality. Additionally, the log-linear model and graphical random forests (GRaFo) representation were used to assess the degree of dependence among in-hospital outcomes of IE. Results: This study analyzed 653 patients: 449 (69.0%) with definite IE; 204 (31.0%) with possible IE; mean age, 41.3 ± 19.2 years; 420 (64%) men. Mode of IE acquisition: community-acquired (67.6%), nosocomial (17.0%), undetermined (15.4%). Complications occurred in 547 patients (83.7%), the most frequent being heart failure (47.0%), neurologic complications (30.7%), and dialysis-dependent renal failure (6.5%). In-hospital mortality was 36.0%. The classification tree analysis identified subgroups with higher in-hospital mortality: patients with community-acquired IE and peripheral stigmata on admission; and patients with nosocomial IE. The log-linear model showed that surgical treatment was related to higher in-hospital mortality in patients with neurologic complications. Conclusions: The use of a machine-learning model allowed identification of subgroups of patients at higher risk for in-hospital mortality. Peripheral stigmata, nosocomial IE, absence of vegetation, and surgery in the presence of neurologic complications are predictors of fatal outcomes in machine learning-based analysis.info:eu-repo/semantics/publishedVersio

    Lignin-derived Pt supported carbon (submicron)fiber electrocatalysts for alcohol electro-oxidation

    Get PDF
    Lignin fibers, with and without phosphorus, and loaded with platinum have been prepared in a single step by electrospinning of lignin/ethanol/phosphoric acid/platinum acetylacetonate precursor solutions. Thermochemical treatments have been carried out to obtain lignin-based carbon fiber electrocatalysts. The electrospun lignin fibers were thermostabilized in air and carbonized at 900 °C. The effect of phosphorus and platinum content on the porous texture, the surface chemistry and the oxidation/electro-oxidation resistance have been studied. Phosphorus-containing carbon fibers develop a higher surface area (c.a. 1200 m2 g−1), exhibit a lower Pt particle size (2.1 nm) and a better particle distribution than their counterpart without phosphorus (c.a. 750 m2 g−1 of surface area and 9.6 nm Pt particle size). It has been proved that phosphorus improves the oxidation and electro-oxidation resistance of the fibers, avoiding their oxidation during the preparation thermal stages and is responsible of the generation of a microporous material with an unusual wide operational potential window (1.9 V). An important Pt–P synergy has been observed in the oxygen transfer during the oxidation and electro-oxidation of the fibers. The obtained carbon fibers can act directly as electrodes without any binder or conductivity promoter. The fibers with platinum have shown outstanding catalyst performance in the electro-oxidation of methanol and ethanol.This work was supported by the Spanish MINECO under CTQ2015-68654-R project

    Drought Sensitiveness on Forest Growth in Peninsular Spain and the Balearic Islands

    Get PDF
    Drought is one of the key natural hazards impacting net primary production and tree growth in forest ecosystems. Nonetheless, tree species show different responses to drought events, which make it difficult to adopt fixed tools for monitoring drought impacts under contrasting environmental and climatic conditions. In this study, we assess the response of forest growth and a satellite proxy of the net primary production (NPP) to drought in peninsular Spain and the Balearic Islands, a region characterized by complex climatological, topographical, and environmental characteristics. Herein, we employed three different indicators based on in situ measurements and satellite image-derived vegetation information (i.e., tree-ring width, maximum annual greenness, and an indicator of NPP). We used seven different climate drought indices to assess drought impacts on the tree variables analyzed. The selected drought indices include four versions of the Palmer Drought Severity Index (PDSI, Palmer Hydrological Drought Index (PHDI), Z-index, and Palmer Modified Drought Index (PMDI)) and three multi-scalar indices (Standardized Precipitation Evapotranspiration Index (SPEI), Standardized Precipitation Index (SPI), and Standardized Precipitation Drought Index (SPDI)). Our results suggest that—irrespective of drought index and tree species—tree-ring width shows a stronger response to interannual variability of drought, compared to the greenness and the NPP. In comparison to other drought indices (e.g., PDSI), and our results demonstrate that multi-scalar drought indices (e.g., SPI, SPEI) are more advantageous in monitoring drought impacts on tree-ring growth, maximum greenness, and NPP. This finding suggests that multi-scalar indices are more appropriate for monitoring and modelling forest drought in peninsular Spain and the Balearic Islands
    • 

    corecore