161 research outputs found

    Sensitivity study of the regional climate model RegCM4 to different convective schemes over West Africa

    Get PDF
    Abstract. The latest version of RegCM4 with CLM4.5 as a land surface scheme was used to assess the performance and sensitivity of the simulated West African climate system to different convection schemes. The sensitivity studies were performed over the West African domain from November 2002 to December 2004 at a spatial resolution of 50 km × 50 km and involved five convective schemes: (i) Emanuel; (ii) Grell; (iii) Emanuel over land and Grell over ocean (Mix1); (iv) Grell over land and Emanuel over ocean (Mix2); and (v) Tiedtke. All simulations were forced with ERA-Interim data. Validation of surface temperature at 2 m and precipitation were conducted using data from the Climate Research Unit (CRU), Global Precipitation Climatology Project (GPCP) and the Tropical Rainfall Measurement Mission (TRMM) during June to September (rainy season), while the simulated atmospheric dynamic was compared to ERA-Interim data. It is worth noting that the few previous similar sensitivity studies conducted in the region were performed using BATS as a land surface scheme and involved less convective schemes. Compared with the previous version of RegCM, RegCM4-CLM also shows a general cold bias over West Africa whatever the convective scheme used. This cold bias is more reduced when using the Emanuel convective scheme. In terms of precipitation, the dominant feature in model simulations is a dry bias that is better reduced when using the Emanuel convective scheme. Considering the good performance with respect to a quantitative evaluation of the temperature and precipitation simulations over the entire West African domain and its subregions, the Emanuel convective scheme is recommended for the study of the West African climate system

    Combined uses of water-table fluctuation (WTF), chloride mass balance (CMB) and environmental isotopes methods to investigate groundwater recharge in the Thiaroye sandy aquifer (Dakar, Senegal)

    Get PDF
    The quaternary sandy sediments which cover most part of the Cap Vert peninsula bear considerable groundwater resources. The aquifer lying beneath a densely populated suburb zone is encountered with major issues such as induced recharge from anthropogenic surface derived pollution and rising water table to ground surface. The present study was aimed at investigating the recharge in the unconfined aquifer of Thiaroye zone using both water table fluctuation (WTF), chloride mass balance(CMB) methods and environmental isotopes. Seasonal fluctuations of groundwater in response to precipitation are monitored during time period (2010 to 2011) using “Thalimede Orpheus mini” recorders in two piezometers (P3-1 and PSQ1) as well as long term record. Chemical and isotopic characterization of groundwater, rainfall and the unsaturated zone were also carried out using a network of 48 points consisting of 8 rainfall stations, 10 unsaturated zone profiles and 30 dug wells, boreholes and piezometers. The concentrations of chloride in rainwater are between 3.2 and 53.4 mg/L. These unsaturated zone profiles range from 65 and 572 mg/L. The recharge obtained by WTF method ranged between 18 and 144 mm during the rainy season (June to October), whereas the recharge givenby CMB method ranged between 8.7 and 73 mm/year. The Thiaroye aquifer recharge obtained from these different methods also showed relatively similar range values. In this study, the WTF method applied computes both infiltration from rainwater and domestic waste water, while the CMB method estimates potential recharge from rainwater. Therefore, in the urban area, the CMB method cannot be applied due to the chloride input from waste water infiltration.Key words: Thiaroye basin, recharge, isotopes, chloride mass balance (CMB), quaternary sandy aquifer (Dakar)

    Exploiting Biological Nitrogen Fixation: A Route Towards a Sustainable Agriculture

    Get PDF
    For all living organisms, nitrogen is an essential element, while being the most limiting in ecosystems and for crop production. Despite the significant contribution of synthetic fertilizers, nitrogen requirements for food production increase from year to year, while the overuse of agrochemicals compromise soil health and agricultural sustainability. One alternative to overcome this problem is biological nitrogen fixation (BNF). Indeed, more than 60% of the fixed N on Earth results from BNF. Therefore, optimizing BNF in agriculture is more and more urgent to help meet the demand of the food production needs for the growing world population. This optimization will require a good knowledge of the diversity of nitrogen-fixing microorganisms, the mechanisms of fixation, and the selection and formulation of efficient N-fixing microorganisms as biofertilizers. Good understanding of BNF process may allow the transfer of this ability to other non-fixing microorganisms or to non-leguminous plants with high added value. This minireview covers a brief history on BNF, cycle and mechanisms of nitrogen fixation, biofertilizers market value, and use of biofertilizers in agriculture. The minireview focuses particularly on some of the most effective microbial products marketed to date, their efficiency, and success-limiting in agriculture. It also highlights opportunities and difficulties of transferring nitrogen fixation capacity in cereals

    [Evaluation of malaria rapid diagnostic test Optimal-IT® pLDH along the Plasmodium falciparum distribution limit in Mauritania].

    Get PDF
    Performance of the malaria Rapid Diagnostic Test (RDT) OptiMal-IT® was evaluated in Mauritania where malaria is low and dependent on a short transmission season. Slide microscopy was considered as the reference method of diagnosis. Febrile patients with suspected malaria were recruited from six health facilities, 3 urban and 3 rural, during two periods (December 2011 to February 2012, and August 2012 to March 2013). Overall, 780 patients were sampled, with RDT and thick blood film microscopy results being obtained for 759 of them. Out of 774 slides examined, of which 200 were positive, P. falciparum and P. vivax mono-infections were detected in 63.5% (127) and 29.5% (59), while P. falciparum/P. vivax coinfections were detected in 7% (14). Both species were observed in all study sites, although in significantly different proportions. The proportions of thick blood film and OptiMal-IT® RDT positive individuals was 26.3% and 30.3% respectively. Sensitivity and specificity of OptiMal-IT® RDT were 89% [95% CI, 84.7-93.3] and 91.1% [88.6-93.4]. Positives and negative predictive values were 78.1% [72.2-83.7] and 95.9% [94.1-97.5]. These diagnostic values are similar to those generally reported elsewhere, and support the use of RDTs as the main diagnostic tool for malaria in Mauritanian health facilities. In the future, choice of RDTs to be used must take account of thermostability in a hot, dry environment and their ability to detect P. falciparum and P. vivax

    Emissions from the road traffic of West African cities : assessment of vehicle fleet and fuel consumption

    Get PDF
    Traffic source emission inventories for the rapidly growing West African urban cities are necessary for better characterization of local vehicle emissions released into the atmosphere of these cities. This study is based on local field measurements in Yopougon (Abidjan, C&ocirc te d&rsquo Ivoire) in 2016 a site representative of anthropogenic activities in West African cities. The measurements provided data on vehicle type and age, traveling time, fuel type, and estimated amount of fuel consumption. The data revealed high traffic flow of personal cars on highways, boulevards, and backstreets, whereas high flows of intra-communal sedan taxis were observed on main and secondary roads. In addition, the highest daily fuel consumption value of 56 L&middot day&minus 1 was recorded for heavy vehicles, while the lowest value of 15 L&middot 1 was recorded for personal cars using gasoline. This study is important for the improvement of uncertainties related to the different databases used to estimate emissions either in national or international reports. This work provides useful information for future studies on urban air quality, climate, and health impact assessments in African cities. It may also be useful for policy makers to support implementation of emission reduction policies in West African cities. Document type: Articl

    Simulating the impact of varying vegetation on West African monsoon surface fluxes using a regional convection‐permitting model

    Get PDF
    This study assessed the sensitivity of the West African climate to varying vegetation fractions. The assessment of a such relationship is critical in understanding the interactions between land surface and atmosphere. Two sets of convection-permitting simulations from the UK Met Office Unified Model at 12 km horizontal resolution covering the monsoon period May–September (MJJAS) were used, one with fixed vegetation fraction (MF-V) and the other with time-varying vegetation fraction (MV-V). Vegetation fractions are based on MODIS retrievals between May and September. We focused on three climatic zones over West Africa: Guinea Coast, Sudanian Sahel, and the Sahel while investigating heat fluxes, temperature, and evapotranspiration. Results reveal that latent heat fluxes are the most strongly affected by vegetation fraction over the Sahelian and Sudanian regions while sensible heat fluxes are more impacted over the Guinea Coast and Sudanian Sahel. Also, in MV-V simulation there is an increase in evapotranspiration mainly over the Sahel and some specific areas in Guinea Coast from June to September. Moreover, it is noticed that high near-surface temperature is associated with a weak vegetation fraction, especially during May and June. Finally, varying vegetation seems to improve the simulation of surface energy fluxes and in turn impact on climate parameters. This suggests that climate modelers should prioritize the use of varying vegetation options to improve the representation of the West African climate system

    Natural history, phenotypic spectrum, and discriminative features of multisystemic RFC1 disease

    Get PDF
    Objective To delineate the full phenotypic spectrum, discriminative features, piloting longitudinal progression data, and sample size calculations of replication factor complex subunit 1 (RFC1) repeat expansions, recently identified as causing cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS). Methods Multimodal RFC1 repeat screening (PCR, Southern blot, whole-exome/genome sequencing?based approaches) combined with cross-sectional and longitudinal deep phenotyping in (1) cross-European cohort A (70 families) with ?2 features of CANVAS or ataxia with chronic cough (ACC) and (2) Turkish cohort B (105 families) with unselected late-onset ataxia. Results Prevalence of RFC1 disease was 67% in cohort A, 14% in unselected cohort B, 68% in clinical CANVAS, and 100% in ACC. RFC1 disease was also identified in Western and Eastern Asian individuals and even by whole-exome sequencing. Visual compensation, sensory symptoms, and cough were strong positive discriminative predictors (>90%) against RFC1-negative patients. The phenotype across 70 RFC1-positive patients was mostly multisystemic (69%), including dysautonomia (62%) and bradykinesia (28%) (overlap with cerebellar-type multiple system atrophy [MSA-C]), postural instability (49%), slow vertical saccades (17%), and chorea or dystonia (11%). Ataxia progression was ?1.3 Scale for the Assessment and Rating of Ataxia points per year (32 cross-sectional, 17 longitudinal assessments, follow-up ?9 years [mean 3.1 years]) but also included early falls, variable nonlinear phases of MSA-C?like progression (SARA points 2.5?5.5 per year), and premature death. Treatment trials require 330 (1-year trial) and 132 (2-year trial) patients in total to detect 50% reduced progression. Conclusions RFC1 disease is frequent and occurs across continents, with CANVAS and ACC as highly diagnostic phenotypes yet as variable, overlapping clusters along a continuous multisystemic disease spectrum, including MSA-C-overlap. Our natural history data help to inform future RFC1 treatment trials. Classification of Evidence This study provides Class II evidence that RFC1 repeat expansions are associated with CANVAS and ACC.FUNDING: Study Funding This work was supported via the European Union’s Horizon 2020 research and innovation program by the BMBF under the frame of the E-Rare-3 network PREPARE (01GM1607; to M. Synofzik,M.A., H.P., B.P.v.d.W.), by the DFG under the frame of EJP-RD network PROSPAX (No. 441409627; M. Synofzik, B.P.v.d.W., A.N.B.), and grant 779257 “Solve-RD” (toM. Synofzik, B.P.v.d.W.). B.P.v.d.W. receives additional research support from ZonMW, Hersenstichting, Gossweiler Foundation, uniQure, and Radboud University Medical Centre. T.B.H. was supported by the DFG (No 418081722). A.T. receives funding from the University of T¨ubingen, medical faculty, for the Clinician Scientist Program grant 439-0-0. A.C. thanks Medical Research Council, MR/T001712/1) and Fondazione CARIPLO (2019-1836) for grant support. L.S., T.K., B.P.v.d.W., and M. Synofzik are members of the European Reference Network for Rare Neurological Diseases, project 739510. A.N.B. is supported by the Suna and Inan Kirac Foundation and Koç University School of Medicine

    Natural History, Phenotypic Spectrum, and Discriminative Features of Multisystemic RFC1-disease

    Get PDF
    OBJECTIVE: To delineate the full phenotypic spectrum, discriminative features, piloting longitudinal progression data, and sample size calculations of RFC1-repeat expansions, recently identified as causing cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS). METHODS: Multimodal RFC1 repeat screening (PCR, southern blot, whole-exome/genome (WES/WGS)-based approaches) combined with cross-sectional and longitudinal deep-phenotyping in (i) cross-European cohort A (70 families) with ≥2 features of CANVAS and/or ataxia-with-chronic-cough (ACC); and (ii) Turkish cohort B (105 families) with unselected late-onset ataxia. RESULTS: Prevalence of RFC1-disease was 67% in cohort A, 14% in unselected cohort B, 68% in clinical CANVAS, and 100% in ACC. RFC1-disease was also identified in Western and Eastern Asians, and even by WES. Visual compensation, sensory symptoms, and cough were strong positive discriminative predictors (>90%) against RFC1-negative patients. The phenotype across 70 RFC1-positive patients was mostly multisystemic (69%), including dysautonomia (62%) and bradykinesia (28%) (=overlap with cerebellar-type multiple system atrophy [MSA-C]), postural instability (49%), slow vertical saccades (17%), and chorea and/or dystonia (11%). Ataxia progression was ∼1.3 SARA points/year (32 cross-sectional, 17 longitudinal assessments, follow-up ≤9 years [mean 3.1]), but also included early falls, variable non-linear phases of MSA-C-like progression (SARA 2.5-5.5/year), and premature death. Treatment trials require 330 (1-year-trial) and 132 (2-year-trial) patients in total to detect 50% reduced progression. CONCLUSIONS: RFC1-disease is frequent and occurs across continents, with CANVAS and ACC as highly diagnostic phenotypes, yet as variable, overlapping clusters along a continuous multisystemic disease spectrum, including MSA-C-overlap. Our natural history data help to inform future RFC1-treatment trials. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that RFC1-repeat expansions are associated with CANVAS and ACC
    corecore