523 research outputs found

    Extensive dissolution of live pteropods in the Southern Ocean

    Get PDF
    The carbonate chemistry of the surface ocean is rapidly changing with ocean acidification, a result of human activities. In the upper layers of the Southern Ocean, aragonite—a metastable form of calcium carbonate with rapid dissolution kinetics—may become undersaturated by 2050 (ref. 2). Aragonite undersaturation is likely to affect aragonite-shelled organisms, which can dominate surface water communities in polar regions. Here we present analyses of specimens of the pteropod Limacina helicina antarctica that were extracted live from the Southern Ocean early in 2008. We sampled from the top 200m of the water column, where aragonite saturation levels were around 1, as upwelled deep water is mixed with surface water containing anthropogenic CO2. Comparing the shell structure with samples from aragonite-supersaturated regions elsewhere under a scanning electron microscope, we found severe levels of shell dissolution in the undersaturated region alone. According to laboratory incubations of intact samples with a range of aragonite saturation levels, eight days of incubation in aragonite saturation levels of 0.94– 1.12 produces equivalent levels of dissolution. As deep-water upwelling and CO2 absorption by surface waters is likely to increase as a result of human activities2,4, we conclude that upper ocean regions where aragonite-shelled organisms are affected by dissolution are likely to expand

    Dissolution dominating calcification process in polar pteropods close to the point of aragonite undersaturation

    Get PDF
    Thecosome pteropods are abundant upper-ocean zooplankton that build aragonite shells. Ocean acidification results in the lowering of aragonite saturation levels in the surface layers, and several incubation studies have shown that rates of calcification in these organisms decrease as a result. This study provides a weight-specific net calcification rate function for thecosome pteropods that includes both rates of dissolution and calcification over a range of plausible future aragonite saturation states (Omega_Ar). We measured gross dissolution in the pteropod Limacina helicina antarctica in the Scotia Sea (Southern Ocean) by incubating living specimens across a range of aragonite saturation states for a maximum of 14 days. Specimens started dissolving almost immediately upon exposure to undersaturated conditions (Omega_Ar,0.8), losing 1.4% of shell mass per day. The observed rate of gross dissolution was different from that predicted by rate law kinetics of aragonite dissolution, in being higher at Var levels slightly above 1 and lower at Omega_Ar levels of between 1 and 0.8. This indicates that shell mass is affected by even transitional levels of saturation, but there is, nevertheless, some partial means of protection for shells when in undersaturated conditions. A function for gross dissolution against Var derived from the present observations was compared to a function for gross calcification derived by a different study, and showed that dissolution became the dominating process even at Omega_Ar levels close to 1, with net shell growth ceasing at an Omega_Ar of 1.03. Gross dissolution increasingly dominated net change in shell mass as saturation levels decreased below 1. As well as influencing their viability, such dissolution of pteropod shells in the surface layers will result in slower sinking velocities and decreased carbon and carbonate fluxes to the deep ocean

    Prediction of photoperiodic regulators from quantitative gene circuit models

    Get PDF
    Photoperiod sensors allow physiological adaptation to the changing seasons. The external coincidence hypothesis postulates that a light-responsive regulator is modulated by a circadian rhythm. Sufficient data are available to test this quantitatively in plants, though not yet in animals. In Arabidopsis, the clock-regulated genes CONSTANS (CO) and FLAVIN, KELCH, F-BOX (FKF1) and their lightsensitive proteins are thought to form an external coincidence sensor. We use 40 timeseries of molecular data to model the integration of light and timing information by CO, its target gene FLOWERING LOCUS T (FT), and the circadian clock. Among other predictions, the models show that FKF1 activates FT. We demonstrate experimentally that this effect is independent of the known activation of CO by FKF1, thus we locate a major, novel controller of photoperiodism. External coincidence is part of a complex photoperiod sensor: modelling makes this complexity explicit and may thus contribute to crop improvement

    Water induced sediment levitation enhances downslope transport on Mars

    Get PDF
    On Mars, locally warm surface temperatures (~293 K) occur, leading to the possibility of (transient) liquid water on the surface. However, water exposed to the martian atmosphere will boil, and the sediment transport capacity of such unstable water is not well understood. Here, we present laboratory studies of a newly recognized transport mechanism: “levitation” of saturated sediment bodies on a cushion of vapor released by boiling. Sediment transport where this mechanism is active is about nine times greater than without this effect, reducing the amount of water required to transport comparable sediment volumes by nearly an order of magnitude. Our calculations show that the effect of levitation could persist up to ~48 times longer under reduced martian gravity. Sediment levitation must therefore be considered when evaluating the formation of recent and present-day martian mass wasting features, as much less water may be required to form such features than previously thought

    Consumer–brand identification revisited: An integrative framework of brand identification, customer satisfaction, and price image and their role for brand loyalty and word of mouth

    Get PDF
    Consumer–brand identification has received considerable attraction among scholars and practitioners in recent years. We contribute to previous research by proposing an integrative model that includes consumer–brand identification, customer satisfaction, and price image to investigate the interrelationships among these constructs as well as their effects on brand loyalty and positive word of mouth. To provide general results, we empirically test the model using a sample of 1443 respondents from a representative consumer panel and 10 service/product brands. The results demonstrate that identification, satisfaction, and price image significantly influence both loyalty and word of mouth. Moreover, we find significant interrelationships among the constructs: Identification positively influences both satisfaction and price image, which also increases satisfaction. By disclosing the relative importance of three separate ways of gaining and retaining customers, this study helps managers more appropriately choose the right mix of branding, pricing, and relationship marketing. From an academic point of view, our research is the first to explicitly examine the effects of the concept of identification for price management and to integrate variables from the fields of branding, relationship marketing, and behavioral pricing, which have separately been identified as particularly important determinants of marketing outcomes

    Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate

    Get PDF
    The Early Eocene Climate Optimum (EECO, which occurred about 51 to 53 million years ago)1, was the warmest interval of the past 65 million years, with mean annual surface air temperature over ten degrees Celsius warmer than during the pre-industrial period2–4. Subsequent global cooling in the middle and late Eocene epoch, especially at high latitudes, eventually led to continental ice sheet development in Antarctica in the early Oligocene epoch (about 33.6 million years ago). However, existing estimates place atmospheric carbon dioxide (CO2) levels during the Eocene at 500–3,000 parts per million5–7, and in the absence of tighter constraints carbon–climate interactions over this interval remain uncertain. Here we use recent analytical and methodological developments8–11 to generate a new high-fidelity record of CO2 concentrations using the boron isotope (δ11Β) composition of well preserved planktonic foraminifera from the Tanzania Drilling Project, revising previous estimates6. Although species-level uncertainties make absolute values difficult to constrain, CO2 concentrations during the EECO were around 1,400 parts per million. The relative decline in CO2 concentration through the Eocene is more robustly constrained at about fifty per cent, with a further decline into the Oligocene12. Provided the latitudinal dependency of sea surface temperature change for a given climate forcing in the Eocene was similar to that of the late Quaternary period13, this CO2 decline was sufficient to drive the well documented high- and low-latitude cooling that occurred through the Eocene14. Once the change in global temperature between the pre-industrial period and the Eocene caused by the action of all known slow feedbacks (apart from those associated with the carbon cycle) is removed2–4, both the EECO and the late Eocene exhibit an equilibrium climate sensitivity relative to the pre-industrial period of 2.1 to 4.6 degrees Celsius per CO2 doubling (66 per cent confidence), which is similar to the canonical range (1.5 to 4.5 degrees Celsius15), indicating that a large fraction of the warmth of the early Eocene greenhouse was driven by increased CO2 concentrations, and that climate sensitivity was relatively constant throughout this period

    Prognostic model to predict postoperative acute kidney injury in patients undergoing major gastrointestinal surgery based on a national prospective observational cohort study.

    Get PDF
    Background: Acute illness, existing co-morbidities and surgical stress response can all contribute to postoperative acute kidney injury (AKI) in patients undergoing major gastrointestinal surgery. The aim of this study was prospectively to develop a pragmatic prognostic model to stratify patients according to risk of developing AKI after major gastrointestinal surgery. Methods: This prospective multicentre cohort study included consecutive adults undergoing elective or emergency gastrointestinal resection, liver resection or stoma reversal in 2-week blocks over a continuous 3-month period. The primary outcome was the rate of AKI within 7 days of surgery. Bootstrap stability was used to select clinically plausible risk factors into the model. Internal model validation was carried out by bootstrap validation. Results: A total of 4544 patients were included across 173 centres in the UK and Ireland. The overall rate of AKI was 14·2 per cent (646 of 4544) and the 30-day mortality rate was 1·8 per cent (84 of 4544). Stage 1 AKI was significantly associated with 30-day mortality (unadjusted odds ratio 7·61, 95 per cent c.i. 4·49 to 12·90; P < 0·001), with increasing odds of death with each AKI stage. Six variables were selected for inclusion in the prognostic model: age, sex, ASA grade, preoperative estimated glomerular filtration rate, planned open surgery and preoperative use of either an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker. Internal validation demonstrated good model discrimination (c-statistic 0·65). Discussion: Following major gastrointestinal surgery, AKI occurred in one in seven patients. This preoperative prognostic model identified patients at high risk of postoperative AKI. Validation in an independent data set is required to ensure generalizability

    Human serum fetuin A/α2HS-glycoprotein level is associated with long-term survival in patients with alcoholic liver cirrhosis, comparison with the Child-Pugh and MELD scores

    Get PDF
    BACKGROUND: Serum concentration of fetuin A/α2HS-glycoprotein (AHSG) is a good indicator of liver cell function and 1-month mortality in patients with alcoholic liver cirrhosis and liver cancer. We intended to determine whether decreased serum AHSG levels are associated with long-term mortality and whether the follow-up of serum AHSG levels can add to the predictive value of the Child-Pugh (CP) and MELD scores. METHODS: We determined serum AHSG concentrations in 89 patients by radial immunodiffusion. Samples were taken at the time of enrolment and in the 1(st), 3(rd), 6(th), and the 12(th )month thereafter. RESULTS: Forty-one patients died during the 1-year follow-up period, 37 of them had liver failure. Data of these patients were analysed further. Deceased patients had lower baseline AHSG levels than the 52 patients who survived (293 ± 77 vs. 490 ± 106 μg/ml, mean ± SD, p < 0.001). Of all laboratory parameters serum AHSG level, CP and MELD scores showed the greatest difference between deceased and survived patients. The cutoff AHSG level 365 μg/ml could differentiate between deceased and survived patients (AUC: 0.937 ± 0.025, p < 0.001, sensitivity: 0.865, specificity: 0.942) better than the MELD score of 20 (AUC: 0.739 ± 0.052, p < 0.001, sensitivity: 0.595, specificity: 0.729). Initial AHSG concentrations < 365 μg/ml were associated with high mortality rate (91.4%, relative risk: 9.874, 95% C.I.: 4.258–22.898, p < 0.001) compared to those with ≥ 365 μg/ml (9.3%). Fourteen out of these 37 fatalities occurred during the first month of observation. During months 1–12 low AHSG concentration proved to be a strong indicator of mortality (relative risk: 9.257, 95% C.I.: 3.945–21.724, p < 0.001). Multiple logistic regression analysis indicated that decrease of serum AHSG concentration was independent of all variables that differed between survived and deceased patients during univariate analysis. Multivariate analysis showed that correlation of low serum AHSG levels with mortality was stronger than that with CP and MELD scores. Patients with AHSG < 365 μg/ml had significantly shortened survival both in groups with MELD < 20 and MELD ≥ 20 (p < 0.0001 and p = 0.0014, respectively). CONCLUSION: Serum AHSG concentration is a reliable and sensitive indicator of 1-year mortality in patients with alcoholic liver cirrhosis that compares well to the predictive value of CP score and may further improve that of MELD score

    Computed tomography of the sternum and its articulations

    Full text link
    The chest wall presents diagnostic difficulties for both the clinician and the radiologist. Because of normal variations in anatomy and ossification, analysis of the sternal region can be particularly confusing. We reviewed the normal computed tomographic (CT) appearance of the sternum in 354 patients. Important normal sternal variants included cortical unsharpness along the posterior aspect of the manubrium, lateral surfaces of the body, and at the sternal fibrocartilaginous articulations; soft tissue prominence at the junction of the sternum and costochondral cartilage; and bony sclerosis at the transitions from manubrium to body and from body to xiphoid. In seven patients with clinically significant sternal abnormality, key CT features were abnormal soft tissue mass (7/7), destruction or irregularity of the cortical contour (7/7), and abnormal increased attenuation of bone (1/7). CT should be the radiologic study of choice in patients with suspected abnormality of the sternum and its articulations.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46774/1/256_2004_Article_BF00349494.pd
    corecore