210 research outputs found

    Colletotrichum trifolii Mutants Disrupted in the Catalytic Subunit of cAMP-Dependent Protein Kinase Are Nonpathogenic

    Get PDF
    Colletotrichum trifolii is the fungal pathogen of alfalfa that causes anthracnose disease. For successful plant infection, this fungus must undergo a series of morphological transitions following conidial attachment, including germination and subsequent differentiation, resulting in appressorium formation. Our previous studies with pharmacological effectors of signaling pathways have suggested the involvement of cyclic AMP (cAMP)-dependent protein kinase (PKA) during these processes. To more precisely evaluate the role of PKA in C. trifolii morphogenesis, the gene encoding the catalytic (C) subunit of PKA (Ct-PKAC) was isolated, sequenced, and inactivated by gene replacement. Southern blot analysis with C. trifolii genomic DNA suggested that Ct-PKAC is a single-copy gene. Northern (RNA) blot analysis with total RNA from different fungal growth stages indicated that the expression of this gene was developmentally regulated. When Ct-PKAC was insertionally inactivated by gene replacement, the transformants showed a small reduction in growth relative to the wild type and conidiation patterns were altered. Importantly, PKA-deficient strains were unable to infect intact alfalfa (host) plants, though only a slight delay was observed in the timing for conidial germination and appressorial formation in the Ct-PKAC disruption mutants. Moreover, these mutants were able to colonize host tissues following artificial wounding, resulting in typical anthracnose disease lesions. Coupled with microscopy, these data suggest that the defect in pathogenicity is likely due to a failure in penetration. Our results demonstrate that PKA has an important role in regulating the transition between vegetative growth and conidiation, and is essential for pathogenic development in C. trifolii

    Field theoretic approach to metastability in the contact process

    Full text link
    A quantum field theoretic formulation of the dynamics of the Contact Process on a regular graph of degree z is introduced. A perturbative calculation in powers of 1/z of the effective potential for the density of particles phi(t) and an instantonic field psi(t) emerging from the quantum formalism is performed. Corrections to the mean-field distribution of densities of particles in the out-of-equilibrium stationary state are derived in powers of 1/z. Results for typical (e.g. average density) and rare fluctuation (e.g. lifetime of the metastable state) properties are in very good agreement with numerical simulations carried out on D-dimensional hypercubic (z=2D) and Cayley lattices.Comment: Final published version; 20 pages, 5 figure

    Vision and Foraging in Cormorants: More like Herons than Hawks?

    Get PDF
    Background Great cormorants (Phalacrocorax carbo L.) show the highest known foraging yield for a marine predator and they are often perceived to be in conflict with human economic interests. They are generally regarded as visually-guided, pursuit-dive foragers, so it would be expected that cormorants have excellent vision much like aerial predators, such as hawks which detect and pursue prey from a distance. Indeed cormorant eyes appear to show some specific adaptations to the amphibious life style. They are reported to have a highly pliable lens and powerful intraocular muscles which are thought to accommodate for the loss of corneal refractive power that accompanies immersion and ensures a well focussed image on the retina. However, nothing is known of the visual performance of these birds and how this might influence their prey capture technique. Methodology/Principal Findings We measured the aquatic visual acuity of great cormorants under a range of viewing conditions (illuminance, target contrast, viewing distance) and found it to be unexpectedly poor. Cormorant visual acuity under a range of viewing conditions is in fact comparable to unaided humans under water, and very inferior to that of aerial predators. We present a prey detectability model based upon the known acuity of cormorants at different illuminances, target contrasts and viewing distances. This shows that cormorants are able to detect individual prey only at close range (less than 1 m). Conclusions/Significance We conclude that cormorants are not the aquatic equivalent of hawks. Their efficient hunting involves the use of specialised foraging techniques which employ brief short-distance pursuit and/or rapid neck extension to capture prey that is visually detected or flushed only at short range. This technique appears to be driven proximately by the cormorant's limited visual capacities, and is analogous to the foraging techniques employed by herons

    Critical Hysteresis from Random Anisotropy

    Get PDF
    Critical hysteresis in ferromagnets is investigated through a NN-component spin model with random anisotropies, more prevalent experimentally than the random fields used in most theoretical studies. Metastability, and the tensorial nature of anisotropy, dictate its physics. Generically, random field Ising criticality occurs, but other universality classes exist. In particular, proximity to O(N)\mathcal{O}(N) criticality may explain the discrepancy between experiment and earlier theories. The uniaxial anisotropy constant, which can be controlled in magnetostrictive materials by an applied stress, emerges as a natural tuning parameter.Comment: four pages, revtex4; minor corrections in the text and typos corrected (published version

    Dense gas in nearby galaxies: XV. Hot ammonia in NGC253, Maffei2 and IC342

    Full text link
    The detection of NH3 inversion lines up to the (J,K)=(6,6) level is reported toward the central regions of the nearby galaxies NGC253, Maffei2, and IC342. The observed lines are up to 406K (for (J,K)=(6,6)) and 848K (for the (9,9) transition) above the ground state and reveal a warm (T_kin= 100 - 140 K) molecular component toward all galaxies studied. The tentatively detected (J,K)=(9,9) line is evidence for an even warmer (>400K) component toward IC342. Toward NGC253, IC342 and Maffei2 the global beam averaged NH3 abundances are 1-2 10^-8, while the abundance relative to warm H2 is around 10^-7. The temperatures and NH3 abundances are similar to values found for the Galactic central region. C-shocks produced in cloud-cloud collisions can explain kinetic temperatures and chemical abundances. In the central region of M82, however, the NH3 emitting gas component is comparatively cool (~ 30K). It must be dense (to provide sufficient NH3 excitation) and well shielded from dissociating photons and comprises only a small fraction of the molecular gas mass in M82. An important molecular component, which is warm and tenuous and characterized by a low ammonia abundance, can be seen mainly in CO. Photon dominated regions (PDRs) can explain both the high fraction of warm H_2 in M82 and the observed chemical abundances.Comment: 11 pages, 3 Figures, 5 Table

    Surface Critical Behavior in Systems with Non-Equilibrium Phase Transitions

    Full text link
    We study the surface critical behavior of branching-annihilating random walks with an even number of offspring (BARW) and directed percolation (DP) using a variety of theoretical techniques. Above the upper critical dimensions d_c, with d_c=4 (DP) and d_c=2 (BARW), we use mean field theory to analyze the surface phase diagrams using the standard classification into ordinary, special, surface, and extraordinary transitions. For the case of BARW, at or below the upper critical dimension, we use field theoretic methods to study the effects of fluctuations. As in the bulk, the field theory suffers from technical difficulties associated with the presence of a second critical dimension. However, we are still able to analyze the phase diagrams for BARW in d=1,2, which turn out to be very different from their mean field analog. Furthermore, for the case of BARW only (and not for DP), we find two independent surface beta_1 exponents in d=1, arising from two distinct definitions of the order parameter. Using an exact duality transformation on a lattice BARW model in d=1, we uncover a relationship between these two surface beta_1 exponents at the ordinary and special transitions. Many of our predictions are supported using Monte-Carlo simulations of two different models belonging to the BARW universality class.Comment: 19 pages, 12 figures, minor additions, 1 reference adde
    • …
    corecore