205 research outputs found

    Path-integral representation for a stochastic sandpile

    Full text link
    We introduce an operator description for a stochastic sandpile model with a conserved particle density, and develop a path-integral representation for its evolution. The resulting (exact) expression for the effective action highlights certain interesting features of the model, for example, that it is nominally massless, and that the dynamics is via cooperative diffusion. Using the path-integral formalism, we construct a diagrammatic perturbation theory, yielding a series expansion for the activity density in powers of the time.Comment: 22 pages, 6 figure

    Nonequilibrium phase transition on a randomly diluted lattice

    Get PDF
    We show that the interplay between geometric criticality and dynamical fluctuations leads to a novel universality class of the contact process on a randomly diluted lattice. The nonequilibrium phase transition across the percolation threshold of the lattice is characterized by unconventional activated (exponential) dynamical scaling and strong Griffiths effects. We calculate the critical behavior in two and three space dimensions, and we also relate our results to the recently found infinite-randomness fixed point in the disordered one-dimensional contact process.Comment: 4 pages, 1 eps figure, final version as publishe

    On the nature of different types of absorbing states

    Full text link
    We present a comparison of three different types of Langevin equation exhibiting absorbing states: the Langevin equation defining the Reggeon field theory, one with multiplicative noise, and a third type in which the noise is complex. Each one is found to describe a different underlying physical mechanism; in particular, the nature of the different absorbing states depends on the type of noise considered. By studying the stationary single-site effective potential, we analyze the impossibility of finding a reaction-diffusion model in the multiplicative noise universality class. We also discuss some theoretical questions related to the nature of complex noise, as for example, whether it is necessary or not to consider a complex equation in order to describe processes as the annihilation reaction, A+A→0A +A \to 0.Comment: 7 figures, Latex fil

    In vivo Observation of Tree Drought Response with Low-Field NMR and Neutron Imaging

    Get PDF
    Using a simple low-field NMR system, we monitored water content in a livingtree in a greenhouse over two months. By continuously running thesystem, we observed changes in tree water content on a scale of halfan hour. The data showed a diurnal change in water content consistentboth with previous NMR and biological observations. Neutron imaging experiments showthat our NMR signal is primarily due to water being rapidly transported through the plant, and not to other sources of hydrogen, such as water in cytoplasm, or water in cell walls. After accountingfor the role of temperature in the observed NMR signal, we demonstratea change in the diurnal signal behavior due to simulated drought conditionsfor the tree. These results illustrate the utility of our system toperform noninvasive measurements of tree water content outside of a temperature controlled environment

    Tricritical directed percolation

    Full text link
    We consider a modification of the contact process incorporating higher-order reaction terms. The original contact process exhibits a non-equilibrium phase transition belonging to the universality class of directed percolation. The incorporated higher-order reaction terms lead to a non-trivial phase diagram. In particular, a line of continuous phase transitions is separated by a tricritical point from a line of discontinuous phase transitions. The corresponding tricritical scaling behavior is analyzed in detail, i.e., we determine the critical exponents, various universal scaling functions as well as universal amplitude combinations

    The one-dimensional contact process: duality and renormalisation

    Full text link
    We study the one-dimensional contact process in its quantum version using a recently proposed real space renormalisation technique for stochastic many-particle systems. Exploiting the duality and other properties of the model, we can apply the method for cells with up to 37 sites. After suitable extrapolation, we obtain exponent estimates which are comparable in accuracy with the best known in the literature.Comment: 15 page

    The non-equilibrium phase transition of the pair-contact process with diffusion

    Full text link
    The pair-contact process 2A->3A, 2A->0 with diffusion of individual particles is a simple branching-annihilation processes which exhibits a phase transition from an active into an absorbing phase with an unusual type of critical behaviour which had not been seen before. Although the model has attracted considerable interest during the past few years it is not yet clear how its critical behaviour can be characterized and to what extent the diffusive pair-contact process represents an independent universality class. Recent research is reviewed and some standing open questions are outlined.Comment: Latexe2e, 53 pp, with IOP macros, some details adde

    Interface depinning versus absorbing-state phase transitions

    Get PDF
    According to recent numerical results from lattice models, the critical exponents of systems with many absorbing states and an order parameter coupled to a non-diffusive conserved field coincide with those of the linear interface depinning model within computational accuracy. In this paper the connection between absorbing state phase transitions and interface pinning in quenched disordered media is investigated. For that, we present a mapping of the interface dynamics in a disordered medium into a Langevin equation for the active-site density and show that a Reggeon-field-theory like description, coupled to an additional non-diffusive conserved field, appears rather naturally. Reciprocally, we construct a mapping from a discrete model belonging in the absorbing state with-a-conserved-field class to a discrete interface equation, and show how a quenched disorder is originated. We discuss the character of the possible noise terms in both representations, and overview the critical exponent relations. Evidence is provided that, at least for dimensions larger that one, both universality classes are just two different representations of the same underlying physics.Comment: 8 page

    Searching for chameleon-like scalar fields with the ammonia method

    Full text link
    (Abridged) The ammonia method, which has been proposed to explore the electron-to-proton mass ratio, mu = m_e/m_p, is applied to nearby dark clouds in the Milky Way. This ratio, which is measured in different physical environments of high (terrestrial) and low (interstellar) densities of baryonic matter is supposed to vary in chameleon-like scalar field models, which predict strong dependence of both masses and coupling constant on the local matter density. High resolution spectral observations of molecular cores in lines of NH3 (J,K) = (1,1), HC3N J = 2-1, and N2H+ J = 1-0 were performed at three radio telescopes to measure the radial velocity offsets, DeltaV = V_rot - V_inv, between the inversion transition of NH3 (1,1) and the rotational transitions of other molecules with different sensitivities to the parameter dmm = (mu_obs - mu_lab)/mu_lab. The measured values of DeltaV exhibit a statistically significant velocity offset of 23 +/- 4_stat +/- 3_sys m/s. When interpreted in terms of the electron-to-proton mass ratio variation, this infers that dmm = (2.2 +/- 0.4_stat +/- 0.3_sys)x10^{-8}. If only a conservative upper bound is considered, then the maximum offset between ammonia and the other molecules is |DeltaV| <= 30 m/s. This gives the most accurate reference point at z = 0 for dmm: |dmm| <= 3x10^{-8}.Comment: 23 pages, 11 figures, 6 tables. Accepted for publication in A&A. Title and text corrected, references update

    Analytic approach to stochastic cellular automata: exponential and inverse power distributions out of Random Domino Automaton

    Full text link
    Inspired by extremely simplified view of the earthquakes we propose the stochastic domino cellular automaton model exhibiting avalanches. From elementary combinatorial arguments we derive a set of nonlinear equations describing the automaton. Exact relations between the average parameters of the model are presented. Depending on imposed triggering, the model reproduces both exponential and inverse power statistics of clusters.Comment: improved, new material added; 9 pages, 3 figures, 2 table
    • …
    corecore