1,223 research outputs found

    Screening elite winter athletes for exercise induced asthma: A comparison of three challenge methods

    Get PDF
    The official published version can be obtained from the link below.Background: The reported prevalence of exercise induced asthma (EIA) in elite winter athletes ranges from 9% to 50%. Many elite winter athletes do not report symptoms of EIA. At present there is no gold standard test for EIA. Objective: To establish the efficacy of screening for EIA and examine the role of the eucapnic voluntary hyperventilation (EVH) challenge and laboratory based and sport specific exercise challenges in the evaluation of elite winter athletes. Methods: 14 athletes (mean (SD) age 22.6 (5.7) years, height 177.2 (7.0) cm, body mass 68.9 (16.9) kg) from the Great Britain short-track speed skating (n=10) and biathlon teams (n=4) were studied. Each athlete completed a laboratory based and sport specific exercise challenge as well as an EVH challenge, in randomised order. Results: All 14 athletes completed each challenge. Two had a previous history of asthma. Ten (including the two with a previous history) had a positive test to at least one of the challenges. Ten athletes had a positive response to EVH; of these, only three also had a positive response to the sport specific challenge. No athletes had a positive response to the laboratory based challenge. Conclusions: Elite athletes should be screened for EIA. EVH is a more sensitive challenge in asymptomatic athletes than sport specific and laboratory based challenges. If sporting governing bodies were to implement screening programmes to test athletes for EIA, EVH is the challenge of choice

    P17 Dietary nitrate supplementation increases fractional exhaled nitric oxide : implications for the assessment of airway health in athletes

    Get PDF
    Background: Fractional exhaled nitric oxide (FeNO) is a simple tool that has an established role in the assessment of airway inflammation in athletes. Specifically, FeNO provides information concerning asthma phenotypes, aetiology of respiratory symptoms, response to anti-inflammatory agents, course of disease and adherence to medication. It is recognised that FeNO can be influenced by a variety of external factors (e.g. atopic status, exercise, respiratory tract infection), however, there remains limited research concerning the impact of dietary nitrate ingestion. The primary aim of this study was therefore to evaluate the effect of acute dietary nitrate supplementation on FeNO and resting pulmonary function parameters. Method: The study was conducted as a randomised double-blind placebo-controlled trial. Thirty male endurance trained athletes (age: 28 ± 6 yrs; BMI: 23 ± 2 kg.m-2) free from cardio-respiratory and metabolic disease, and stable at time of study entry (i.e. entirely asymptomatic without recent respiratory tract infection) attended the laboratory on two separate occasions. On arrival to the laboratory, athletes consumed either 140ml nitrate-rich beetroot juice (15.2 mmol nitrate) (NIT) or nitrate-depleted beetroot juice (0 mmol nitrate) (PLA). In accordance with international guidelines all athletes performed resting FeNO and forced spirometry (2.5hrs post ingestion). Airway inflammation was evaluated using established FeNO thresholds: (intermediate [≥25ppb] and high [>50ppb]). Results: All athletes demonstrated normal baseline lung function (FEV1 % predicted >80%). A three-fold rise in resting FeNO was observed following NIT (median [IQR]): 32ppb [37] in comparison to PLA: 10ppb [12] (P0.05). Conclusion: Dietary nitrate ingestion should be considered when employing FeNO for the assessment of airway health in athletes. Our findings have implications concerning the decision to initiate or modify inhaler therapy. Further research is therefore required to determine the impact of chronic dietary nitrate ingestion on pulmonary function and bronchoprovocation testing in athletes with pre-existing asthma and/or exercise-induced bronchoconstriction

    The Effect of 400 µg Inhaled Salbutamol on 3 km Time Trial Performance in a Low Humidity Environment.

    Get PDF
    The Objectives of the study were to investigate whether 400 µg inhaled salbutamol influences 3 km running time-trial performance and lung function in eucapnic voluntary hyperpnoea positive (EVH+ve) and negative (EVH-ve) individuals. Fourteen male participants (22.4 ± 1.6yrs; 76.4 ± 8.7kg; 1.80 ± 0.07 m); (7 EVH+ve; 7 EVH-ve) were recruited following written informed consent. All participants undertook an EVH challenge to identify either EVH+ve (↓FEV1>10%) or EVH-ve (↓FEV110% from baseline) in FEV1 following any time-trial. Administration of 400µg inhaled salbutamol does not improve 3 km time-trial performance in either mild EVH+ve or EVH-ve individuals despite significantly increased HR and FEV1

    Eucapnic Voluntary Hyperpnea: Gold Standard for Diagnosing Exercise-Induced Bronchoconstriction in Athletes?

    Get PDF
    In athletes, a secure diagnos is of exercise-induced bronchoconstriction (EIB) is dependent on objective testing. Evaluating spirometric indices of airflow before and following an exercise bout is intuitively the optimal means for the diagnosis; however, this approach is recognized as having several key limitations. Accordingly, alternative indirect bronchoprovocation tests have been recommended as surrogate means for obtaining a diagnosis of EIB. Of these tests, it is often argued that the eucapnic voluntary hyperpnea (EVH) challenge represents the ‘gold standard’. This article provides a state-of-the-art review of EVH, including an overview of the test methodology and its interpretation. We also address the performance of EVH against the other functional and clinical approaches commonly adopted for the diagnosis of EIB. The published evidence supports a key role for EVH in the diagnostic algorithm for EIB testing in athletes. However, its wide sensitivity and specificity and poor repeatability preclude EVH from being termed a ‘gold standard’ test for EIB

    An Experimental Biomimetic Platform for Artificial Olfaction

    Get PDF
    Artificial olfactory systems have been studied for the last two decades mainly from the point of view of the features of olfactory neuron receptor fields. Other fundamental olfaction properties have only been episodically considered in artificial systems. As a result, current artificial olfactory systems are mostly intended as instruments and are of poor benefit for biologists who may need tools to model and test olfactory models. Herewith, we show how a simple experimental approach can be used to account for several phenomena observed in olfaction
    corecore