10,788 research outputs found
Applications of a Venus thermospheric circulation model
A variety of Pioneer Venus observations suggest a global scale, day-to-night Venus thermospheric circulation. Model studies of the dynamics and energetics of the Venus thermosphere are presented in order to address new driving, mixing and cooling mechanisms for an improved model simulation. The adopted approach was to reexamine the circulation by first using a previous two dimensional code to quantify those physical processes which can be inferred from the Pioneer Venus observations. Specifically, the model was used to perform sensitivity studies to determine the degree to which eddy cooling, eddy or wave drag, eddy diffusion and 15 micrometer radiational cooling are necessary to bring the model temperature and composition fields into agreement with observations. Three EUV heating cases were isolated for study. Global temperature and composition fields in good agreement with Pioneer data were obtained. Large scale horizontal winds 220 m/s were found to be consistent with the observed cold nightside temperatures and dayside bulges of O, CO and CO2. Observed dayside temperatures were obtained by using a 7 to 19% EUV heating efficiency profile. The enhanced 15 micrometer cooling needed for thermal balance is obtained using the best rate coefficient available for atomic O collisional excitation of CO2(0,1,0). Eddy conduction was not found to be a viable cooling mechanism due to the weakened global circulation. The strong 15 micrometer damping and low EUV efficiency imply a very weak dependence of the general circulation to solar cycle variability. The NCAR terrestrial thermospheric general circulation model was adapted for Venus inputs using the above two dimensional model parameters, to give a three dimensional benchmark for future Venus modelling work
Rectenna system design
The function of the rectenna in the solar power satellite system is described and the basic design choices based on the desired microwave field concentration and ground clearance requirements are given. One important area of concern, from the EMI point of view, harmonic reradiation and scattering from the rectenna is also designed. An optimization of a rectenna system design to minimize costs was performed. The rectenna cost breakdown for a 56 w installation is given as an example
Near-IR imaging of moderate redshift galaxy clusters
We have obtained near-IR imaging of 3 moderate-z clusters on the 1.3 m at KPNO with SQIID, a new camera offering wide-field (5.5 arcmin) simultaneous JHK band imaging. Our photometry on a sample of approximately 100 likely member galaxies in one of the clusters, Abell 370 at z = 0.37, shows that we can obtain magnitudes good to 20 percent down to K = 18, considerably below the estimated K* = 16.5 at this redshift. These data indicate that there are no systematic problems in obtaining photometry at faint levels with SQIID. With the development of larger arrays, the field is open to progress. The resulting J, H, and K data for three clusters are combined with previously obtained multiband optical photometry. We present an investigation of the spectral properties and evolution of the dominant cold stellar populations by comparing optical-to-IR colors and color-magnitude diagrams to predictions from population synthesis models and galaxy spectral evolution codes
Adults with autism spectrum conditions experience increased levels of anomalous perception
Autism spectrum condition (ASC) is characterised by differences in social interaction and behavioural inflexibility. In addition to these core symptoms, atypical sensory responses are prevalent in the ASC phenotype. Here we investigated anomalous perception, i.e. hallucinatory and/or out of body experiences in adults with ASC. Thirty participants with an ASC diagnosis and thirty neurotypical controls completed the Cardiff Anomalous Perception Scale (CAPS) and the Social Responsiveness Scale (SRS-2). The CAPS is a 32-item questionnaire that asks participants to indicate whether or not they experience a range of anomalous and out of body experiences, and to rate how intrusive and distressing these experiences are. The SRS-2 asks participants to rate the extent to which they identify with a series of 65 statements that describe behaviours associated with the autism phenotype. We found that total CAPS score was significantly higher in the participants with ASC (mean = 14.8, S.D. = 7.9) than the participants without ASC (mean = 3.6, S.D. = 4.1). In addition, the frequency of anomalous perception, the level of distraction and the level of distress associated with the experience were significantly increased in participants with ASC. Importantly, both the frequency of anomalous perceptual experiences and the level of distress caused by anomalous perception in this sample of adults with ASC were very similar to that reported previously in a sample of non-autistic participants who were being treated in hospital for a current psychotic episode. These data indicate that anomalous perceptual experiences are common in adults with ASC and are associated with a high level of distress. The origins of anomalous perception in ASC and the implication of this phenomenon are considered
Tourism and the smartphone app: capabilities, emerging practice and scope in the travel domain.
Based on its advanced computing capabilities and ubiquity, the smartphone has rapidly been adopted as a tourism travel tool.With a growing number of users and a wide varietyof applications emerging, the smartphone is fundamentally altering our current use and understanding of the transport network and tourism travel. Based on a review of smartphone apps, this article evaluates the current functionalities used in the domestic tourism travel domain and highlights where the next major developments lie. Then, at a more conceptual level, the article analyses how the smartphone mediates tourism travel and the role it might play in more collaborative and dynamic travel decisions to facilitate sustainable travel. Some emerging research challenges are discussed
IR-correlated 31 GHz radio emission from Orion East
Lynds dark cloud LDN1622 represents one of the best examples of anomalous
dust emission, possibly originating from small spinning dust grains. We present
Cosmic Background Imager (CBI) 31 GHz data of LDN1621, a diffuse dark cloud to
the north of LDN1622 in a region known as Orion East. A broken ring with
diameter g\approx 20 arcmin of diffuse emission is detected at 31 GHz, at
\approx 20-30 mJy beam with an angular resolution of \approx 5 arcmin.
The ring-like structure is highly correlated with Far Infra-Red emission at
m with correlation coefficients of r \approx 0.7-0.8, significant
at . Multi-frequency data are used to place constraints on other
components of emission that could be contributing to the 31 GHz flux. An
analysis of the GB6 survey maps at 4.85 GHz yields a upper limit on
free-free emission of 7.2 mJy beam (\la 30 per cent of the observed
flux) at the CBI resolution. The bulk of the 31 GHz flux therefore appears to
be mostly due to dust radiation. Aperture photometry, at an angular resolution
of 13 arcmin and with an aperture of diameter 30 arcmin, allowed the use of
IRAS maps and the {\it WMAP} 5-year W-band map at 93.5 GHz. A single modified
blackbody model was fitted to the data to estimate the contribution from
thermal dust, which amounts to \sim\sim100 \mu18.1\pm4.4 \mu^{-1}$, consistent with the values found for
LDN1622.Comment: 8 pages, 3 figures, 3 tables, submitted to MNRA
- …