81 research outputs found

    Illness caused by Sindbis and West Nile viruses in South Africa

    Get PDF
    No Abstract

    The Composition of Cosmic Rays at the Knee

    Get PDF
    The observation of a small change in spectral slope, or 'knee' in the fluxes of cosmic rays near energies 10^15 eV has caused much speculation since its discovery over 40 years ago. The origin of this feature remains unknown. A small workshop to review some modern experimental measurements of this region was held at the Adler Planetarium in Chicago, USA in June 2000. This paper summarizes the results presented at this workshop and the discussion of their interpretation in the context of hadronic models of atmospheric airshowers.Comment: 36 pages, 10 figure

    Deep Submillimeter Surveys: Luminous Infrared Galaxies at High Redshift

    Get PDF
    Deep surveys at 850microns from Mauna Kea using the SCUBA camera on the JCMT appear to have discovered a substantial population of ultraluminous infrared galaxies (ULIGs: L_ir > 10^{12} L_sun). The cumulative space density of these sources (~10,000 per sq.deg with S_850 > 1mJy) is sufficient to account for nearly all of the extragalactic background light at submillimeter wavelengths. Current estimates of the redshift distribution suggest a peak in the comoving space density of SCUBA sources at z = 1-3, similar to what is observed for QSOs and radio galaxies. The luminosity density in the far-infrared/submillimeter exceeds that in the UV by factors of 3-10 over this redshift range, implying that as much as 80-90% of the "activity" in galaxies at z < 4 is hidden by dust. The SCUBA sources plausibly represent the primary epoch in the formation of spheroids and massive black holes triggered by major mergers of large gas-rich disks.Comment: LaTex, 14 pages with 9 embedded .eps figures. To appear in ``Space Infrared Telescopes and Related Science", 32nd COSPAR workshop, Nagoya, Japan 1998, ed. T. Matsumoto, T. de Graau

    Stripes, Pseudogaps, and Van Hove Nesting in the Three-band tJ Model

    Full text link
    Slave boson calculations have been carried out in the three-band tJ model for the high-T_c cuprates, with the inclusion of coupling to oxygen breathing mode phonons. Phonon-induced Van Hove nesting leads to a phase separation between a hole-doped domain and a (magnetic) domain near half filling, with long-range Coulomb forces limiting the separation to a nanoscopic scale. Strong correlation effects pin the Fermi level close to, but not precisely at the Van Hove singularity (VHS), which can enhance the tendency to phase separation. The resulting dispersions have been calculated, both in the uniform phases and in the phase separated regime. In the latter case, distinctly different dispersions are found for large, random domains and for regular (static) striped arrays, and a hypothetical form is presented for dynamic striped arrays. The doping dependence of the latter is found to provide an excellent description of photoemission and thermodynamic experiments on pseudogap formation in underdoped cuprates. In particular, the multiplicity of observed gaps is explained as a combination of flux phase plus charge density wave (CDW) gaps along with a superconducting gap. The largest gap is associated with VHS nesting. The apparent smooth evolution of this gap with doping masks a crossover from CDW-like effects near optimal doping to magnetic effects (flux phase) near half filling. A crossover from large Fermi surface to hole pockets with increased underdoping is found. In the weakly overdoped regime, the CDW undergoes a quantum phase transition (TCDW0T_{CDW}\to 0), which could be obscured by phase separation.Comment: 15 pages, Latex, 18 PS figures Corrects a sign error: major changes, esp. in Sect. 3, Figs 1-4,6 replace

    Search for long-lived neutral particles in pp collisions at s√=13 TeV that decay into displaced hadronic jets in the ATLAS calorimeter

    Get PDF
    This paper describes a search for pairs of neutral, long-lived particles decaying in the ATLAS calorimeter. Long-lived particles occur in many extensions to the Standard Model and may elude searches for new promptly decaying particles. The analysis considers neutral, long-lived scalars with masses between 5 and 400 GeV, produced from decays of heavy bosons with masses between 125 and 1000 GeV, where the long-lived scalars decay into Standard Model fermions. The analysis uses either 10.8 fb−1 or 33.0 fb−1 of data (depending on the trigger) recorded in 2016 at the LHC with the ATLAS detector in proton–proton collisions at a centre-of-mass energy of 13 TeV. No significant excess is observed, and limits are reported on the production cross section times branching ratio as a function of the proper decay length of the long-lived particles
    corecore