1,824 research outputs found

    Collective Bargaining under Complete Information

    Get PDF
    In this paper, we build and structurally estimate a complete information bargaining model of collective negotiation for Spain. For large firms, the assumption of complete information seems a sensible one, and it matches the collective bargaining environment better than the one provided by private information models. The specification of the model with players having different discount factors allows us to measure their relative bargaining power, a recurrent question in the theory of bargaining. We find that both entrepreneurs and workers have high discount factors, and no evidence that entrepreneurs have bigger bargaining power as usually assumed.Delays, sequential bargaining, structural estimation

    Evaluación de catalizadores de óxido de zinc y su actividad catalítica en la reacción de transesterificación para la producción de biodiésel

    Get PDF
    Con el fin de obtener un mayor rendimiento en la producciónde biodiésel, comparado con el obtenido en estudios previos(1), se sintetizaron catalizadores de óxido de zinc empleando los métodos de impregnación y sol-gel. En el primero, se utilizaron como soportes catalíticos, -Al2O3 y la zeolita Faujasita Y, variando diferentes parámetrostales como concentración de la solución y tiempo de impregnación; la sal escogida para realizar la impregnación fue cloruro de zinc (ZnCl2). En la técnica sol-gel se empleó como precursor un alcóxido, acetato de zinc,[Zn(CH3COO)2], en la cual la relación molar acetato: agua y el pH de la solución fueron las variables seleccionadas.Los catalizadores se caracterizaron por difracción de rayos X, espectroscopía de absorción atómica, análisis termogravimétrico y fisisorción de nitrógeno a 77K. La reacción de ansesterificación se llevó a cabo en un reactor con chaqueta de calentamiento a una temperatura de 55 °C y a presión atmosférica por un período de 6 horas; la relación molar aceite-metanol fue 1:40y el porcentaje de catalizador fue del 5 % w/w con respectoal aceite de palma. El mayor rendimiento de biodiésel se obtuvo empleando el catalizador soportado en -Al2O3 con un tiempo de impregnación de 24 h, una concentración de ZnCl2 1M, alcanzando un área superficial de 133 m2/g y una distribución básicamente mesoporosa

    Bioseguridad en estomatología

    Get PDF
    El personal que labora en los servicios de estomatología están expuesto a diario al riesgo de contraer diversas enfermedades por su trabajo con pacientes portadores de enfermedades infecciosas que se transmiten por la sangre o por los aerosoles, además de manipular sustancias toxicas y estar expuestos al ruido de los equipases muy importante crear una serie de medidas y normativas para mantener a todo el personal estomatologuito actualizado y protegido en sus actividades diarias planteándose la necesidad de que existan los mecanismos que aseguren el cumplimiento de la Bioseguridad para este personal

    Desarrollo de un exoesqueleto para la rehabilitación del movimiento flexo-extensor del codo

    Get PDF
    En este trabajo de investigación se presenta el desarrollo de un dispositivo electro-mecánico para la rehabilitación del movimiento flexor-extensor del codo con potencial rehabilitatorio. Para la elaboración de este prototipo se diseñó y construyó una articulación del codo el cual permite realizar movimientos de 0° a 120°. El diseño del sistema de engranaje se realizó utilizando el software Solid Edge a partir de una selección previa del motor de paso que ofreciera el torque suficiente para lograr la flexión y extensión del codo, seguidamente para la construcción de este sistema se utilizó una impresión 3D en PLA. Dicho sistema se acoplo a un sistema estabilizador de brazo con bisagra. El prototipo se opera desde un aplicativo software en Android utilizando el IDE MITapp inventor, que le envía la angulación deseada a un dispositivo arduino el cual implementa un sistema de control digital. Para mejorar la percepción de la terapia con el exoesqueleto se elaboró un aplicativo software de telerehabilitación utilizando el IDE processing y el dispositivo de reconocimiento corporal Kinect, el cual guía al paciente en una terapia interactiva donde realizan la rehabilitación del movimiento de flexión y extensión guiando un objeto virtual de un ángulo a otro.In this research work, the development of an electro-mechanical device for the rehabilitation of the flexor-extensor movement of the elbow with rehabilitative potential is presented. For the development of this prototype, an elbow joint was designed and built which allows movements from 0 ° to 120 °. The design of the gear system was carried out using Solid Edge software from a previous selection of the step motor that offered enough torque to achieve flexion and extension of the elbow, then for the construction of this system a 3D printing was used in PLA. This system was coupled to a hinged arm stabilizer system. The prototype is operated from a software application on Android using the IDE MITapp inventor, which sends the desired angulation to an Arduino device which implements a digital control system. To improve the perception of exoskeleton therapy, a telerehabilitation software application was developed using IDE processing and a Kinect body recognition device, which guides the patient in an interactive therapy where they perform the rehabilitation of flexion and extension movement by guiding a virtual object from one angle to another

    Aplicación de HACCP para mejora de la calidad del arroz en Molino´s Cristo Morado S.A.C. Ferreñafe 2020

    Get PDF
    El presente proyecto tuvo como objeto aplicar un plan HACCP para mejorar la calidad de arroz en molinos cristo morado S.A.C., cuyo tipo y diseño de investigación fueron descriptivo y no experimental respectivamente. Asimismo, la información se recolectó mediante un cuestionario y guía documental. Con la herramienta de Ishikawa se establecieron las causas y se observó los agentes relevantes que se tienen que mejorar. Para aplicar la propuesta se utilizó un sistema documentario de técnicas y métodos que posibilitó trabajar de una forma más factible el proceso de pilado de arroz acrecentando su calidad esencialmente. Con esta propuesta la calidad de arroz mejoró en un 20%, además se logró un beneficio-costo de S/. 1.35, obteniendo el molino una utilidad de S/. 0.35 por cada sol que se invierte.TesisInfraestructura, Tecnología y Medio Ambient

    Thermal and Electrical Parameter Identification of a Proton Exchange Membrane Fuel Cell Using Genetic Algorithm

    Full text link
    [EN] Proton Exchange Membrane Fuel Cell (PEMFC) fuel cells is a technology successfully used in the production of energy from hydrogen, allowing the use of hydrogen as an energy vector. It is scalable for stationary and mobile applications. However, the technology demands more research. An important research topic is fault diagnosis and condition monitoring to improve the life and the efficiency and to reduce the operation costs of PEMFC devices. Consequently, there is a need of physical models that allow deep analysis. These models must be accurate enough to represent the PEMFC behavior and to allow the identification of different internal signals of a PEM fuel cell. This work presents a PEM fuel cell model that uses the output temperature in a closed loop, so it can represent the thermal and the electrical behavior. The model is used to represent a Nexa Ballard 1.2 kW fuel cell; therefore, it is necessary to fit the coefficients to represent the real behavior. Five optimization algorithms were tested to fit the model, three of them taken from literature and two proposed in this work. Finally, the model with the identified parameters was validated with real data.This research was funded by COLCIENCIAS (Administrative department of science, technology and innovation of Colombia) scholarship program PDBCEx, COLDOC 586, and the support provided by the Corporacion Universitaria Comfacauca, Popayan-ColombiaAriza-Chacón, HE.; Correcher Salvador, A.; Sánchez-Diaz, C.; Pérez-Navarro, Á.; García Moreno, E. (2018). Thermal and Electrical Parameter Identification of a Proton Exchange Membrane Fuel Cell Using Genetic Algorithm. Energies. 11(8):1-15. https://doi.org/10.3390/en11082099S115118Mehta, V., & Cooper, J. S. (2003). Review and analysis of PEM fuel cell design and manufacturing. Journal of Power Sources, 114(1), 32-53. doi:10.1016/s0378-7753(02)00542-6Wang, Y., Chen, K. S., Mishler, J., Cho, S. C., & Adroher, X. C. (2011). A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Applied Energy, 88(4), 981-1007. doi:10.1016/j.apenergy.2010.09.030Amphlett, J. C., Baumert, R. M., Mann, R. F., Peppley, B. A., Roberge, P. R., & Harris, T. J. (1995). Performance Modeling of the Ballard Mark IV Solid Polymer Electrolyte Fuel Cell: I . Mechanistic Model Development. Journal of The Electrochemical Society, 142(1), 1-8. doi:10.1149/1.2043866Tao, S., Si-jia, Y., Guang-yi, C., & Xin-jian, Z. (2005). Modelling and control PEMFC using fuzzy neural networks. Journal of Zhejiang University-SCIENCE A, 6(10), 1084-1089. doi:10.1631/jzus.2005.a1084Amphlett, J. C., Mann, R. F., Peppley, B. A., Roberge, P. R., & Rodrigues, A. (1996). A model predicting transient responses of proton exchange membrane fuel cells. Journal of Power Sources, 61(1-2), 183-188. doi:10.1016/s0378-7753(96)02360-9Mo, Z.-J., Zhu, X.-J., Wei, L.-Y., & Cao, G.-Y. (2006). Parameter optimization for a PEMFC model with a hybrid genetic algorithm. International Journal of Energy Research, 30(8), 585-597. doi:10.1002/er.1170YE, M., WANG, X., & XU, Y. (2009). Parameter identification for proton exchange membrane fuel cell model using particle swarm optimization. International Journal of Hydrogen Energy, 34(2), 981-989. doi:10.1016/j.ijhydene.2008.11.026Askarzadeh, A., & Rezazadeh, A. (2011). A grouping-based global harmony search algorithm for modeling of proton exchange membrane fuel cell. International Journal of Hydrogen Energy, 36(8), 5047-5053. doi:10.1016/j.ijhydene.2011.01.070El-Fergany, A. A. (2018). Electrical characterisation of proton exchange membrane fuel cells stack using grasshopper optimiser. IET Renewable Power Generation, 12(1), 9-17. doi:10.1049/iet-rpg.2017.0232Li, Q., Chen, W., Wang, Y., Liu, S., & Jia, J. (2011). Parameter Identification for PEM Fuel-Cell Mechanism Model Based on Effective Informed Adaptive Particle Swarm Optimization. IEEE Transactions on Industrial Electronics, 58(6), 2410-2419. doi:10.1109/tie.2010.2060456Ali, M., El-Hameed, M. A., & Farahat, M. A. (2017). Effective parameters’ identification for polymer electrolyte membrane fuel cell models using grey wolf optimizer. Renewable Energy, 111, 455-462. doi:10.1016/j.renene.2017.04.036Sun, Z., Wang, N., Bi, Y., & Srinivasan, D. (2015). Parameter identification of PEMFC model based on hybrid adaptive differential evolution algorithm. Energy, 90, 1334-1341. doi:10.1016/j.energy.2015.06.081Gong, W., Yan, X., Liu, X., & Cai, Z. (2015). Parameter extraction of different fuel cell models with transferred adaptive differential evolution. Energy, 86, 139-151. doi:10.1016/j.energy.2015.03.117Turgut, O. E., & Coban, M. T. (2016). Optimal proton exchange membrane fuel cell modelling based on hybrid Teaching Learning Based Optimization – Differential Evolution algorithm. Ain Shams Engineering Journal, 7(1), 347-360. doi:10.1016/j.asej.2015.05.003Al-Othman, A. K., Ahmed, N. A., Al-Fares, F. S., & AlSharidah, M. E. (2015). Parameter Identification of PEM Fuel Cell Using Quantum-Based Optimization Method. Arabian Journal for Science and Engineering, 40(9), 2619-2628. doi:10.1007/s13369-015-1711-0Methekar, R. N., Prasad, V., & Gudi, R. D. (2007). Dynamic analysis and linear control strategies for proton exchange membrane fuel cell using a distributed parameter model. Journal of Power Sources, 165(1), 152-170. doi:10.1016/j.jpowsour.2006.11.047KUNUSCH, C., HUSAR, A., PULESTON, P., MAYOSKY, M., & MORE, J. (2008). Linear identification and model adjustment of a PEM fuel cell stack. International Journal of Hydrogen Energy, 33(13), 3581-3587. doi:10.1016/j.ijhydene.2008.04.052Li, C.-H., Zhu, X.-J., Cao, G.-Y., Sui, S., & Hu, M.-R. (2008). Identification of the Hammerstein model of a PEMFC stack based on least squares support vector machines. Journal of Power Sources, 175(1), 303-316. doi:10.1016/j.jpowsour.2007.09.049Fontes, G., Turpin, C., & Astier, S. (2010). A Large-Signal and Dynamic Circuit Model of a H2/O2\hbox{H}_{2}/\hbox{O}_{2} PEM Fuel Cell: Description, Parameter Identification, and Exploitation. IEEE Transactions on Industrial Electronics, 57(6), 1874-1881. doi:10.1109/tie.2010.2044731Cheng, S.-J., & Liu, J.-J. (2015). Nonlinear modeling and identification of proton exchange membrane fuel cell (PEMFC). International Journal of Hydrogen Energy, 40(30), 9452-9461. doi:10.1016/j.ijhydene.2015.05.109Buchholz, M., & Krebs, V. (2007). Dynamic Modelling of a Polymer Electrolyte Membrane Fuel Cell Stack by Nonlinear System Identification. Fuel Cells, 7(5), 392-401. doi:10.1002/fuce.200700013Meiler, M., Schmid, O., Schudy, M., & Hofer, E. P. (2008). Dynamic fuel cell stack model for real-time simulation based on system identification. Journal of Power Sources, 176(2), 523-528. doi:10.1016/j.jpowsour.2007.08.051Wang, C., Nehrir, M. H., & Shaw, S. R. (2005). Dynamic Models and Model Validation for PEM Fuel Cells Using Electrical Circuits. IEEE Transactions on Energy Conversion, 20(2), 442-451. doi:10.1109/tec.2004.842357Restrepo, C., Konjedic, T., Garces, A., Calvente, J., & Giral, R. (2015). Identification of a Proton-Exchange Membrane Fuel Cell’s Model Parameters by Means of an Evolution Strategy. IEEE Transactions on Industrial Informatics, 11(2), 548-559. doi:10.1109/tii.2014.2317982Salim, R., Nabag, M., Noura, H., & Fardoun, A. (2015). The parameter identification of the Nexa 1.2 kW PEMFC’s model using particle swarm optimization. Renewable Energy, 82, 26-34. doi:10.1016/j.renene.2014.10.012Pérez-Navarro, A., Alfonso, D., Ariza, H. E., Cárcel, J., Correcher, A., Escrivá-Escrivá, G., … Vargas, C. (2016). Experimental verification of hybrid renewable systems as feasible energy sources. Renewable Energy, 86, 384-391. doi:10.1016/j.renene.2015.08.03
    corecore