4,504 research outputs found

    A review of the application of non-intrusive infrared sensing for gas–liquid flow characterization

    Get PDF
    This paper reviews the use of non-intrusive optical infrared sensing for gas–liquid flow characterisation in pipes. The application of signal analysis techniques to infrared-derived temporal signal outputs enables the objective determination of flow characteristics such as flow regimes, phase fractions and total pressure drops. Key considerations for improving the performance of infrared sensors are discussed. These include global and local measurements, ray divergence, effects of ambient light and temperature variations. Most experimental studies have reported consistent and excellent results for flow regime identifications and phase fraction estimation but with a few validating total pressures drop from correlations and direct pressure measurements. Other gaps in research were highlighted; these include the use of pipes sizes greater than 0.005m for experimentation under high superficial velocities conditions greater than 10 m/s. The capabilities of infrared sensing as a standalone measurement for flow metering were considered a possibility via an inferential approach for phase volumetric rates. More so, the derived infrared sensing flow characteristics could be combined with available pressure–volume–temperature correlations in estimating mass flow rates of each phase. As a future development, a conceptual modification to surface installations using a transparent opaque coupling is suggested to overcome the accessibility limitation of infrared light penetration for opaque pipes

    Impact of the Diamond Light Source on research in Earth and environmental sciences: current work and future perspectives.

    Get PDF
    Diamond Light Source Ltd celebrated its 10th anniversary as a company in December 2012 and has now accepted user experiments for over 5 years. This paper describes the current facilities available at Diamond and future developments that enhance its capacities with respect to the Earth and environmental sciences. A review of relevant research conducted at Diamond thus far is provided. This highlights how synchrotron-based studies have brought about important advances in our understanding of the fundamental parameters controlling highly complex mineral–fluid–microbe interface reactions in the natural environment. This new knowledge not only enhances our understanding of global biogeochemical processes, but also provides the opportunity for interventions to be designed for environmental remediation and beneficial use

    Regulation of glycine metabolism by the glycine cleavage system and conjugation pathway in mouse models of Non-Ketotic Hyperglycinemia

    Get PDF
    Glycine abundance is modulated in a tissue-specific manner by use in biosynthetic reactions, catabolism by the glycine cleavage system (GCS) and excretion via glycine conjugation. Dysregulation of glycine metabolism is associated with multiple disorders including epilepsy, developmental delay and birth defects. Mutation of the GCS component glycine decarboxylase (GLDC) in Non-Ketotic Hyperglycinemia (NKH) causes accumulation of glycine in body fluids, but there is a gap in our knowledge regarding the effects on glycine metabolism in tissues. Here, we analysed mice carrying mutations in Gldc that result in severe or mild elevations of plasma glycine and model NKH. Liver of Gldc-deficient mice accumulated glycine and numerous glycine derivatives, including multiple acylglycines, indicating increased flux through reactions mediated by enzymes including glycine-N-acyltransferase and arginine:glycine amidinotransferase. Levels of dysregulated metabolites increased with age and were normalised by liver-specific rescue of Gldc expression. Brain tissue exhibited increased abundance of glycine, as well as derivatives including guanidinoacetate, which may itself be epileptogenic. Elevation of brain tissue glycine occurred even in the presence of only mildly elevated plasma glycine in mice carrying a missense allele of Gldc. Treatment with benzoate enhanced hepatic glycine conjugation thereby lowering plasma and tissue glycine. Moreover, administration of a glycine conjugation pathway intermediate, cinnamate, similarly achieved normalisation of liver glycine derivatives and circulating glycine. Although exogenous benzoate and cinnamate impact glycine levels via activity of glycine-N-acyltransferase, that is not expressed in brain, they are sufficient to lower levels of glycine and derivatives in brain tissue of treated Gldc-deficient mice

    Charged-Higgs phenomenology in the Aligned two-Higgs-doublet model

    Get PDF
    The alignment in flavour space of the Yukawa matrices of a general two-Higgs-doublet model results in the absence of tree-level flavour-changing neutral currents. In addition to the usual fermion masses and mixings, the aligned Yukawa structure only contains three complex parameters, which are potential new sources of CP violation. For particular values of these three parameters all known specific implementations of the model based on discrete Z_2 symmetries are recovered. One of the most distinctive features of the two-Higgs-doublet model is the presence of a charged scalar. In this work, we discuss its main phenomenological consequences in flavour-changing processes at low energies and derive the corresponding constraints on the parameters of the aligned two-Higgs-doublet model.Comment: 46 pages, 19 figures. Version accepted for publication in JHEP. References added. Discussion slightly extended. Conclusions unchange

    An anisotropic elastoplastic model for soft clays based on logarithmic contractancy

    Get PDF
    A new constitutive model for soft structured clays is developed based on an existing model called S-CLAY1S, which is a Cam Clay type model that accounts for anisotropy and destructuration. The new model (E-SCLAY1S) uses the framework of logarithmic contractancy to introduce a new parameter that controls the shape of the yield surface as well as the plastic potential (as an assumed associated flow rule is applied). This new parameter can be used to fit the coefficient of earth pressure at rest, the undrained shear strength or the stiffness under shearing stress paths predicted by the model. The improvement to previous constitutive models that account for soil fabric and bonding is formulated within the contractancy framework such that the model predicts the uniqueness of the critical state line and its slope is independent of the contractancy parameter. Good agreement has been found between the model predictions and published laboratory results for triaxial compression tests. An important finding is that the contractancy parameter, and consequently the shape of the yield surface, seem to change with the degree of anisotropy; however, further study is required to investigate this response. From published data, the yield surface for isotropically consolidated clays seems β€œbullet” or β€œalmond” shaped, similar to that of the Cam Clay model; while for anisotropically consolidated clays, the yield surface is more elliptical, like a rotated and distorted Modified Cam Clay yield surface

    A Close Nuclear Black Hole Pair in the Spiral Galaxy NGC 3393

    Full text link
    The current picture of galaxy evolution advocates co-evolution of galaxies and their nuclear massive black holes (MBHs), through accretion and merging. Quasar pairs (6,000-300,000 light-years separation) exemplify the first stages of this gravitational interaction. The final stages, through binary MBHs and final collapse with gravitational wave emission, are consistent with the sub-light-year separation MBHs inferred from optical spectra and light-variability of two quasars. The double active nuclei of few nearby galaxies with disrupted morphology and intense star formation (e.g., NGC 6240 and Mkn 463; ~2,400 and ~12,000 light-years separation respectively) demonstrate the importance of major mergers of equal mass spirals in this evolution, leading to an elliptical galaxy, as in the case of the double radio nucleus (~15 light-years separation) elliptical 0402+379. Minor mergers of galaxies with a smaller companion should be a more common occurrence, evolving into spiral galaxies with active MBH pairs, but have hitherto not been seen. Here we report the presence of two active MBHs, separated by ~430 light-years, in the Seyfert galaxy NGC 3393. The regular spiral morphology and predominantly old circum-nuclear stellar population of this galaxy, and the closeness of the MBHs embedded in the bulge, suggest the result of minor merger evolution.Comment: Preprint (not final) version of a paper to appear in Natur

    Running Speed in Mammals Increases with Muscle n-6 Polyunsaturated Fatty Acid Content

    Get PDF
    Polyunsaturated fatty acids (PUFAs) are important dietary components that mammals cannot synthesize de novo. Beneficial effects of PUFAs, in particular of the n-3 class, for certain aspects of animal and human health (e.g., cardiovascular function) are well known. Several observations suggest, however, that PUFAs may also affect the performance of skeletal muscles in vertebrates. For instance, it has been shown that experimentally n-6 PUFA-enriched diets increase the maximum swimming speed in salmon. Also, we recently found that the proportion of PUFAs in the muscle phospholipids of an extremely fast runner, the brown hare (Lepus europaeus), are very high compared to other mammals. Therefore, we predicted that locomotor performance, namely running speed, should be associated with differences in muscle fatty acid profiles. To test this hypothesis, we determined phospholipid fatty acid profiles in skeletal muscles of 36 mammalian species ranging from shrews to elephants. We found that there is indeed a general positive, surprisingly strong relation between the n-6 PUFAs content in muscle phospholipids and maximum running speed of mammals. This finding suggests that muscle fatty acid composition directly affects a highly fitness-relevant trait, which may be decisive for the ability of animals to escape from predators or catch prey

    Mechanics Regulates Fate Decisions of Human Embryonic Stem Cells

    Get PDF
    Research on human embryonic stem cells (hESCs) has attracted much attention given their great potential for tissue regenerative therapy and fundamental developmental biology studies. Yet, there is still limited understanding of how mechanical signals in the local cellular microenvironment of hESCs regulate their fate decisions. Here, we applied a microfabricated micromechanical platform to investigate the mechanoresponsive behaviors of hESCs. We demonstrated that hESCs are mechanosensitive, and they could increase their cytoskeleton contractility with matrix rigidity. Furthermore, rigid substrates supported maintenance of pluripotency of hESCs. Matrix mechanics-mediated cytoskeleton contractility might be functionally correlated with E-cadherin expressions in cell-cell contacts and thus involved in fate decisions of hESCs. Our results highlighted the important functional link between matrix rigidity, cellular mechanics, and pluripotency of hESCs and provided a novel approach to characterize and understand mechanotransduction and its involvement in hESC function

    Simpson's Paradox, Lord's Paradox, and Suppression Effects are the same phenomenon – the reversal paradox

    Get PDF
    This article discusses three statistical paradoxes that pervade epidemiological research: Simpson's paradox, Lord's paradox, and suppression. These paradoxes have important implications for the interpretation of evidence from observational studies. This article uses hypothetical scenarios to illustrate how the three paradoxes are different manifestations of one phenomenon – the reversal paradox – depending on whether the outcome and explanatory variables are categorical, continuous or a combination of both; this renders the issues and remedies for any one to be similar for all three. Although the three statistical paradoxes occur in different types of variables, they share the same characteristic: the association between two variables can be reversed, diminished, or enhanced when another variable is statistically controlled for. Understanding the concepts and theory behind these paradoxes provides insights into some controversial or contradictory research findings. These paradoxes show that prior knowledge and underlying causal theory play an important role in the statistical modelling of epidemiological data, where incorrect use of statistical models might produce consistent, replicable, yet erroneous results
    • …
    corecore