44 research outputs found

    WatchPlant: Networked Bio-hybrid Systems for Pollution Monitoring of Urban Areas

    Full text link
    [EN] Growing cities are a world-wide phenomenon and simultaneously awareness about potential dangers due to air pollution, heat, and pathogens is increasing. Integrated and permanent monitoring of environmental features in cities can help to establish an early warning system and to provide data for policy makers. In our new project `WatchPlant,¿ we propose a green approach for urban monitoring by a network of sensors tightly coupled with natural plants. We want to develop a sustainable, energy-efficient bio-hybrid system that harvests energy from living plants and utilizes methods of phytosensing, that is, using natural plants as sensors. We present our concept, here with focus on Alife-related methods operating on the gathered plant data and the bio-hybrid network. With a self-organizing network of sensors, that are alive, we hope to contribute to our future of livable green cities.Project WatchPlant has received funding from the European Union's Horizon 2020 research and innovation program under the FET grant agreement, no. 101017899. Project Biohybrids is funded by H2020 program, grant agreement no. 945773.Hamann, H.; Bogdan, S.; Diaz-Espejo, A.; García-Carmona, L.; Hernandez-Santana, V.; Kernbach, S.; Kernbach, A.... (2021). WatchPlant: Networked Bio-hybrid Systems for Pollution Monitoring of Urban Areas. MIT Press. 1-9. https://doi.org/10.1162/isal_a_003771

    Biohybrid systems for environmental intelligence on living plants: WatchPlant project

    Full text link
    [EN] New challenges such as climate change and sustainability arise in society influencing not only environmental issues but human's health directly. To face these new challenges IT technologies and their application to environmental intelligent monitoring become into a powerful tool to set new policies and blueprints to contribute to social good. In the new H2020 project, WatchPlant will provide new tools for environmental intelligence monitoring by the use of plants as "well-being" sensors of the environment they inhabit. This will be possible by equipping plants with a net of communicated wireless self-powered sensors, coupled with artificial intelligence (AI) to become plants into "biohybrid organisms" to test exposure-effects links between plant and the environment. It will become plants into a new tool to be aware of the environment status in a very early stage towards in-situ monitoring. Additionally, the system is devoted to be sustainable and energy-efficient thanks to the use of clean energy sources such as solar cells and a enzymatic biofuel cell (BFC) together with its self-deployment, self-awareness, adaptation, artificial evolution and the AI capabilities. In this concept paper, WatchPlant will envision how to face this challenge by joining interdisciplinary efforts to access the plant sap for energy harvesting and sensing purposes and become plants into "biohybrid organisms" to benefit social good in terms of environmental monitoring in urban scenarios.Project WatchPlant has received funding from the European Union¿s Horizon 2020 research and innovation program under the FET grant agreement, no. 101017899.García-Carmona, L.; Bogdan, S.; Diaz-Espejo, A.; Dobielewski, M.; Hamann, H.; Hernandez-Santana, V.; Kernbach, A.... (2021). Biohybrid systems for environmental intelligence on living plants: WatchPlant project. Association for Computing Machinery (ACM). 210-215. https://doi.org/10.1145/3462203.347588521021

    Hydraulic Traits Emerge as Relevant Determinants of Growth Patterns in Wild Olive Genotypes Under Water Stress

    Get PDF
    The hydraulic traits of plants, or the efficiency of water transport throughout the plant hydraulic system, could help to anticipate the impact of climate change and improve crop productivity. However, the mechanisms explaining the role of hydraulic traits on plant photosynthesis and thus, plant growth and yield, are just beginning to emerge. We conducted an experiment to identify differences in growth patterns at leaf, root and whole plant level among four wild olive genotypes and to determine whether hydraulic traits may help to explain such differences through their effect on photosynthesis. We estimated the relative growth rate (RGR), and its components, leaf gas exchange and hydraulic traits both at the leaf and whole-plant level in the olive genotypes over a full year. Photosynthetic capacity parameters were also measured. We observed different responses to water stress in the RGRs of the genotypes studied being best explained by changes in the net CO2 assimilation rate (NAR). Further, net photosynthesis, closely related to NAR, was mainly determined by hydraulic traits, both at leaf and whole-plant levels. This was mediated through the effects of hydraulic traits on stomatal conductance. We observed a decrease in leaf area: sapwood area and leaf area: root area ratios in water-stressed plants, which was more evident in the olive genotype Olea europaea subsp. guanchica (GUA8), whose RGR was less affected by water deficit than the other olive genotypes. In addition, at the leaf level, GUA8 water-stressed plants presented a better photosynthetic capacity due to a higher mesophyll conductance to CO2 and a higher foliar N. We conclude that hydraulic allometry adjustments of whole plant and leaf physiological response were well coordinated, buffering the water stress experienced by GUA8 plants. In turn, this explained their higher relative growth rates compared to the rest of the genotypes under water-stress conditions

    Mesophyll diffusion conductance to CO 2: An unappreciated central player in photosynthesis

    Get PDF
    Mesophyll diffusion conductance to CO 2 is a key photosynthetic trait that has been studied intensively in the past years. The intention of the present review is to update knowledge of g m, and highlight the important unknown and controversial aspects that require future work. The photosynthetic limitation imposed by mesophyll conductance is large, and under certain conditions can be the most significant photosynthetic limitation. New evidence shows that anatomical traits, such as cell wall thickness and chloroplast distribution are amongst the stronger determinants of mesophyll conductance, although rapid variations in response to environmental changes might be regulated by other factors such as aquaporin conductance.Gaps in knowledge that should be research priorities for the near future include: how different is mesophyll conductance among phylogenetically distant groups and how has it evolved? Can mesophyll conductance be uncoupled from regulation of the water path? What are the main drivers of mesophyll conductance? The need for mechanistic and phenomenological models of mesophyll conductance and its incorporation in process-based photosynthesis models is also highlighted.The study was financially supported by the Estonian Ministry of Science and Education (grant SF1090065s07), the Spanish Ministry of Science and Innovation through projects BFU2008-01072 (MEFORE), AGL2009-11310/AGR, BFU2011-23294 (MECOME) and CGL2009-13079-C02-01 (PALEOISOTREE), and the European Commission through European Regional Fund (the Estonian Center of Excellence in Environmental Adaptation), and the Marie Curie project MC-ERG-246725 (FP7). J.P.F. is supported by the Ramón y Cajal program (RYC-2008-02050). A.G. had a Swiss National Science Fellowship (PA00P3_126259). M.M.B. and C.R.W are supported by Future Fellowships from the Australian Research Council (FT0992063 and FT100100024). C.D. was supported by a grant from the French government and by the cooperation project Tranzfor (Transferring Research between EU and Australia–New Zealand on Forestry and Climate Change, PIRSES-GA-2008-230793) funded by the European Union

    A regulated deficit irrigation strategy for hedgerow olive orchards with high plant density

    Get PDF
    Background & Aims There is not a consensus on the best irrigation approach for super-high density (SHD) olive orchards. Our aim was to design and test a regulated deficit irrigation (RDI) strategy for a sustainable balance between water saving, tree vigour and oil production. Methods We tested our RDI strategy for 3 years in an ‘Arbequina’ orchard with 1,667 trees ha−1. Two levels of irrigation reduction were applied, 60RDI and 30RDI, scaled to replacing 60 % and 30 %, respectively, of the of irrigation needs (IN). We also had a full irrigation (FI) treatment as control, with IN totalling 4,701 m3 ha−1 Results The 30RDI treatment showed the best balance between water saving, tree vigour and oil production. With a yearly irrigation amount (IA) of 1,366 m3 ha−1, which meant 72 % water saving as compared to FI, the reduction in oil yield was 26 % only. Conclusions Our results, together with recent knowledge on the effect of water stress on fruit development, allowed us to suggest a potentially improved RDI strategy for which a total IA of ca. 2,100 m3 ha−1 was calculated. Both some management details and the benefits of this suggested RDI strategy are still to be tested

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    Rapid hydraulic recovery in Eucalyptus pauciflora after drought: Linkages between stem hydraulics and leaf gas exchange

    No full text
    In woody plants, photosynthetic capacity is closely linked to rates at which the plant hydraulic system can supply water to the leaf surface. Drought-induced embolism can cause sharp declines in xylem hydraulic conductivity that coincide with stomatal closure and reduced photosynthesis. Recovery of photosynthetic capacity after drought is dependent on restored xylem function, although few data exist to elucidate this coordination. We examined the dynamics of leaf gas exchange and xylem function in Eucalyptus pauciflora seedlings exposed to a cycle of severe water stress and recovery after re-watering. Stomatal closure and leaf turgor loss occurred at water potentials that delayed the extensive spread of embolism through the stem xylem. Stem hydraulic conductance recovered to control levels within 6h after re-watering despite a severe drought treatment, suggesting an active mechanism embolism repair. However, stomatal conductance did not recover after 10d of re-watering, effecting tighter control of transpiration post drought. The dynamics of recovery suggest that a combination of hydraulic and non-hydraulic factors influenced stomatal behaviour post drought. Xylem embolism has been identified as one of the principal factors involved in drought associated declines of forest health and primary productivity. We investigated links between leaf gas exchange and hydraulic conductivity in Eucalyptus pauciflora during drought and recovery. Close coordination was observed among leaf gas exchange, leaf tissue water relations and the hydraulic capacity of the stem during the dry down phase. Although almost complete hydraulic failure occurred at a Ψx of -3.0MPa, stem hydraulic capacity was rapidly restored by a xylem refilling mechanism upon re-watering. These results provide crucial information for understanding how linkages between stem and leaf traits influence the recovery of woody plants from drought

    Role of hydraulic and chemical signals in leaves, stems and roots in the stomatal behaviour of olive trees under water stress and recovery conditions

    No full text
    The control of plant transpiration by stomata under water stress and recovery conditions is of paramount importance for plant performance and survival. Although both chemical and hydraulic signals emitted within a plant are considered to play a major role in controlling stomatal dynamics, they have rarely been assessed together. The aims of this study were to evaluate (i) the dynamics of chemical and hydraulic signals at leaf, stem and root level, and (ii) their effect on the regulation of stomatal conductance (g(s)) during water stress and recovery. Measurements of g(s), water potential, abscisic acid (ABA) content and loss of hydraulic functioning at leaf, stem and root level were conducted during a water stress and recovery period imposed on 1-year-old olive plants (Olea europaea L.). Results showed a strong hydraulic segmentation in olive plants, with higher hydraulic functioning losses in roots and leaves than in stems. The dynamics of hydraulic conductance of roots and leaves observed as water stress developed could explain both a protection of the hydraulic functionality of larger organs of the plant (i.e., branches, etc.) and a role in the down-regulation of g(s). On the other hand, ABA also increased, showing a similar pattern to g(s) dynamics, and thus its effect on g(s) in response to water stress cannot be ruled out. However, neither hydraulic nor non-hydraulic factors were able to explain the delay in the full recovery of g(s) after soil water availability was restored
    corecore