18 research outputs found

    North Atlantic simulations in Coordinated Ocean-ice Reference Experiments phase II (CORE-II). Part I: Mean states

    Get PDF
    Simulation characteristics from eighteen global ocean–sea-ice coupled models are presented with a focus on the mean Atlantic meridional overturning circulation (AMOC) and other related fields in the North Atlantic. These experiments use inter-annually varying atmospheric forcing data sets for the 60-year period from 1948 to 2007 and are performed as contributions to the second phase of the Coordinated Ocean-ice Reference Experiments (CORE-II). The protocol for conducting such CORE-II experiments is summarized. Despite using the same atmospheric forcing, the solutions show significant differences. As most models also differ from available observations, biases in the Labrador Sea region in upper-ocean potential temperature and salinity distributions, mixed layer depths, and sea-ice cover are identified as contributors to differences in AMOC. These differences in the solutions do not suggest an obvious grouping of the models based on their ocean model lineage, their vertical coordinate representations, or surface salinity restoring strengths. Thus, the solution differences among the models are attributed primarily to use of different subgrid scale parameterizations and parameter choices as well as to differences in vertical and horizontal grid resolutions in the ocean models. Use of a wide variety of sea-ice models with diverse snow and sea-ice albedo treatments also contributes to these differences. Based on the diagnostics considered, the majority of the models appear suitable for use in studies involving the North Atlantic, but some models require dedicated development effort

    Mesoscale Dynamics and Eddy Heat Transport in the Japan/East Sea from 1990 to 2010: A Model-Based Analysis

    No full text
    The driving mechanisms of mesoscale processes and associated heat transport in the Japan/East Sea (JES) from 1990 to 2010 were examined using eddy-resolving ocean model simulations. The simulated circulation showed correctly reproduced JES major basin-scale currents and mesoscale dynamics features. We show that mesoscale eddies can deepen isotherms/isohalines up to several hundred meters and transport warm and low salinity waters along the western and eastern JES boundaries. The analysis of eddy kinetic energy (EKE) showed that the mesoscale dynamics reaches a maximum intensity in the upper 300 m layer. Throughout the year, the EKE maximum is observed in the southeastern JES, and a pronounced seasonal variability is observed in the southwestern and northwestern JES. The comparison of the EKE budget components confirmed that various mechanisms can be responsible for the generation of mesoscale dynamics during the year. From winter to spring, the baroclinic instability of basin-scale currents is the leading mechanism of the JES mesoscale dynamics’ generation. In summer, the leading role in the generation of the mesoscale dynamics is played by the barotropic instability of basin-scale currents, which are responsible for the emergence of mesoscale eddies, and in autumn, the leading role is played by instabilities and the eddy wind work. We show that the meridional heat transport (MHT) is mainly polewards. Furthermore, we reveal two paths of eddy heat transport across the Subpolar Front: along the western and eastern (along 138∘ E) JES boundaries. Near the Tsugaru Strait, we describe the detected intensive westward eddy heat transport reaching its maximum in the first half of the year and decreasing to the minimum by summer

    Numerical simulations of the bottom flows in abyssal channels of the Atlantic Ocean

    No full text
    The archive contains data numerical modeling of the bottom flows in three regions of the Atlantic Ocean: the Vema Channel, the Romanche and Vema Fracture zones. Numerical simulations of bottom currents were performed using three-dimensional ocean circulation model INMOM (Institute of Numerical Mathematics Ocean Model)

    CTD/LADCP measurements and numerical simulations of the bottom flows in abyssal channels of the Atlantic

    No full text
    The archive contains data of measurements and numerical modeling of the bottom flows in three regions of the Atlantic Ocean: the Vema Channel, the Romanche and Vema Fracture zones. Our measurements include CTD and LADCP profiles from the sea surface to the bottom; numerical simulations of bottom currents were performed using three-dimensional ocean circulation model INMOM (Institute of Numerical Mathematics Ocean Model)
    corecore