249 research outputs found

    Improving the detection of rare native fish species in environmental DNA metabarcoding surveys

    Get PDF
    The presence of threatened or endangered species often strongly influences management and conservation decisions. Within the Murray–Darling Basin (MDB), Australia, the presence of threatened native fish affects the management and allocation of water resources. These decisions are currently based on traditional fisheries data and a predictive MaxEnt model. However, it is important to verify the model's predictive power given the implication it may have, but this requires methods with a high detection sensitivity for rare species. Although the use of environmental DNA (eDNA) metabarcoding achieves a higher detection sensitivity compared with traditional methods, earlier surveys in the MDB have shown that the highly abundant and invasive common carp (Cyprinus carpio) can reduce detection probabilities for rare species. Consequently, a polymerase chain reaction (PCR) blocking primer designed to block the amplification of carp eDNA could increase the detection probabilities for rare native species while simultaneously reducing the required sampling effort and survey costs. Although PCR blocking primers are often used in ancient DNA and dietary studies, no aquatic eDNA metabarcoding study to date has evaluated the potential benefits of using PCR blocking primers. A laboratory and field‐based pilot study was used to address this knowledge gap and assess the impact of a blocking primer on the detection probabilities of native species and the minimum sampling effort required. Results showed that the inclusion of the blocking primer increased the detection probabilities for native species by 10–20% and reduced the minimum required sampling effort by 25–50%. These findings provide important insights into possible methods for optimizing eDNA metabarcoding surveys for the detection of rare aquatic species

    Enzymatic degradation of phenazines can generate energy and protect sensitive organisms from toxicity

    Get PDF
    Diverse bacteria, including several Pseudomonas species, produce a class of redox-active metabolites called phenazines that impact different cell types in nature and disease. Phenazines can affect microbial communities in both positive and negative ways, where their presence is correlated with decreased species richness and diversity. However, little is known about how the concentration of phenazines is modulated in situ and what this may mean for the fitness of members of the community. Through culturing of phenazine-degrading mycobacteria, genome sequencing, comparative genomics, and molecular analysis, we identified several conserved genes that are important for the degradation of three Pseudomonas-derived phenazines: phenazine-1-carboxylic acid (PCA), phenazine-1-carboxamide (PCN), and pyocyanin (PYO). PCA can be used as the sole carbon source for growth by these organisms. Deletion of several genes in Mycobacterium fortuitum abolishes the degradation phenotype, and expression of two genes in a heterologous host confers the ability to degrade PCN and PYO. In cocultures with phenazine producers, phenazine degraders alter the abundance of different phenazine types. Not only does degradation support mycobacterial catabolism, but also it provides protection to bacteria that would otherwise be inhibited by the toxicity of PYO. Collectively, these results serve as a reminder that microbial metabolites can be actively modified and degraded and that these turnover processes must be considered when the fate and impact of such compounds in any environment are being assessed

    Monitoring riverine fish communities through eDNA metabarcoding:Determining optimal sampling strategies along an altitudinal and biodiversity gradient

    Get PDF
    Monitoring aquatic biodiversity through DNA extracted from environmental samples (eDNA) combined with high-throughput sequencing, commonly referred to as eDNA metabarcoding, is increasing in popularity within the scientific community. However, sampling strategies, laboratory protocols and analytical pipelines can influence the results of eDNA metabarcoding surveys. While the impact of laboratory protocols and analytical pipelines have been extensively studied, the importance of sampling strategies on eDNA metabarcoding surveys has not received the same attention. To avoid underestimating local biodiversity, adequate sampling strategies (i.e. sampling intensity and spatial sampling replication) need to be implemented. This study evaluated the impact of sampling strategies along an altitudinal and biodiversity gradient in the upper section of the Murrumbidgee River (Murray-Darling Basin, Australia). An eDNA metabarcoding survey was used to determine the local fish biodiversity and evaluate the influence of sampling intensity and spatial sampling replication on the biodiversity estimates. The results show that optimal eDNA sampling strategies varied between sites and indicate that river morphology, species richness and species abundance affect the optimal sampling intensity and spatial sampling replication needed to accurately assess the fish biodiversity. While the generality of the patterns will need to be confirmed through future studies, these findings provide a basis to guide future eDNA metabarcoding surveys in river systems

    Complete Genome Sequence of Curtobacterium sp. Strain MR_MD2014, Isolated from Topsoil in Woods Hole, Massachusetts

    Get PDF
    Here, we present the 3,443,800-bp complete genome sequence of Curtobacterium sp. strain MR_MD2014 (phylum Actinobacteria). This strain was isolated from soil in Woods Hole, MA, as part of the 2014 Microbial Diversity Summer Program at the Marine Biological Laboratory in Woods Hole, MA

    Complete Genome Sequence of Streptomyces sp. Strain CCM_MD2014, Isolated from Topsoil in Woods Hole, Massachusetts

    Get PDF
    Here, we present the complete genome sequence of Streptomyces sp. strain CCM_MD2014 (phylum Actinobacteria), isolated from surface soil in Woods Hole, MA. Its single linear chromosome of 8,274,043 bp in length has a 72.13% G+C content and contains 6,948 coding sequences

    Les droits disciplinaires des fonctions publiques : « unification », « harmonisation » ou « distanciation ». A propos de la loi du 26 avril 2016 relative à la déontologie et aux droits et obligations des fonctionnaires

    Get PDF
    The production of tt‾ , W+bb‾ and W+cc‾ is studied in the forward region of proton–proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98±0.02 fb−1 . The W bosons are reconstructed in the decays W→ℓν , where ℓ denotes muon or electron, while the b and c quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions.The production of ttt\overline{t}, W+bbW+b\overline{b} and W+ccW+c\overline{c} is studied in the forward region of proton-proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98 ±\pm 0.02 \mbox{fb}^{-1}. The WW bosons are reconstructed in the decays WνW\rightarrow\ell\nu, where \ell denotes muon or electron, while the bb and cc quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions

    Influence of offshore oil and gas structures on seascape ecological connectivity.

    Get PDF
    Offshore platforms, subsea pipelines, wells and related fixed structures supporting the oil and gas (O&G) industry are prevalent in oceans across the globe, with many approaching the end of their operational life and requiring decommissioning. Although structures can possess high ecological diversity and productivity, information on how they interact with broader ecological processes remains unclear. Here, we review the current state of knowledge on the role of O&G infrastructure in maintaining, altering or enhancing ecological connectivity with natural marine habitats. There is a paucity of studies on the subject with only 33 papers specifically targeting connectivity and O&G structures, although other studies provide important related information. Evidence for O&G structures facilitating vertical and horizontal seascape connectivity exists for larvae and mobile adult invertebrates, fish and megafauna; including threatened and commercially important species. The degree to which these structures represent a beneficial or detrimental net impact remains unclear, is complex and ultimately needs more research to determine the extent to which natural connectivity networks are conserved, enhanced or disrupted. We discuss the potential impacts of different decommissioning approaches on seascape connectivity and identify, through expert elicitation, critical knowledge gaps that, if addressed, may further inform decision making for the life cycle of O&G infrastructure, with relevance for other industries (e.g. renewables). The most highly ranked critical knowledge gap was a need to understand how O&G structures modify and influence the movement patterns of mobile species and dispersal stages of sessile marine species. Understanding how different decommissioning options affect species survival and movement was also highly ranked, as was understanding the extent to which O&G structures contribute to extending species distributions by providing rest stops, foraging habitat, and stepping stones. These questions could be addressed with further dedicated studies of animal movement in relation to structures using telemetry, molecular techniques and movement models. Our review and these priority questions provide a roadmap for advancing research needed to support evidence-based decision making for decommissioning O&G infrastructure
    corecore