43 research outputs found
Secreted Klotho and FGF23 in chronic kidney disease Stage 1 to 5: a sequence suggested from a cross-sectional study
Background Klotho and fibroblast growth factor 23 (FGF23) are key regulators of mineral metabolism in renal insufficiency. FGF23 levels have been shown to increase early in chronic kidney disease (CKD); however, the corresponding soluble Klotho levels at the different CKD stages are not known. Methods Soluble Klotho, FGF23, parathyroid hormone (PTH), 1,25-dihydroxy vitamin D3 (1,25D) and other parameters of mineral metabolism were measured in an observational cross-sectional study in 87 patients. Locally weighted scatter plot smoothing function of these parameters were plotted versus estimated glomerular filtration rate (eGFR) to illustrate the pattern of the relationship. Linear and non-linear regression analyses were performed to estimate changes in mineral metabolism parameters per 1mL/min/1.73 m2 decline. Results In CKD 1-5, Klotho and 1,25D linearly decreased, whereas both FGF23 and PTH showed a baseline at early CKD stages and then a curvilinear increase. Crude mean Klotho level declined by 4.8 pg/mL (95% CI 3.5-6.2 pg/mL, P < 0.0001) and 1,25D levels by 0.30 ng/L (95% CI 0.18-0.41 ng/L, P < 0.0001) as GFR declined by 1 mL/min/1.73 m2. After adjustment for age, gender, serum 25-hydroxyvitamin D levels and concomitant medications (calcium, supplemental vitamin D and calcitriol), we estimated that the mean Klotho change was 3.2 pg/mL (95% CI 1.2-5.2 pg/mL, P = 0.0019) for each 1 mL/min/1.73 m2 GFR change. FGF23 departed from the baseline at an eGFR of 47 mL/min/1.73 m2 (95% CI 39-56 mL/min/1.73 m2), whereas PTH departed at an eGFR of 34 mL/min/1.73 m2 (95% CI 19-50 mL/min/1.73 m2). Conclusions Soluble Klotho and 1,25D levels decrease and FGF23 levels increase at early CKD stages, whereas PTH levels increase at more advanced CKD stage
Safety and tolerability of sirolimus treatment in patients with autosomal dominant polycystic kidney disease
Background. We initiated a randomized controlled clinical trial to assess the effect of sirolimus on disease progression in patients affected by autosomal dominant polycystic kidney disease (ADPKD). Here we report the preliminary safety results of the first 6 months of treatment. Method. A total of 25 patients were randomized to sirolimus 2 mg/day and 25 patients to no treatment except standard care. Treatment adherence was monitored electronically. At baseline and at Month 6, laboratory parameters were analysed and the urinary protein profile in 24-h urine collections was determined. Results. Both treatment groups were well balanced for age, sex and renal function. In 94.1 ± 11.4% of the study days, patients in the sirolimus group were exposed to the drug when assuming a therapeutic efficacy duration of 30 h. At Month 6, the mean sirolimus dose and trough level were 1.28 ± 0.71 mg/day and 3.8 ± 1.9 μg/l, respectively. Glomerular (albumin, transferrin, IgG) and tubular (retinol-binding protein, α1-microglobulin) protein excretion remained unchanged. Glomerular filtration rate also did not change significantly. Haematological parameters were similar in both groups, except for a mild reduction of the mean corpuscular volume of erythrocytes in patients receiving sirolimus. Lipid levels were similar in both groups. Adverse events were transient and mild, and no grade 3 or 4 events occurred. The incidence of infections was similar in the sirolimus group (80%) and the standard group (88%). The most common gastrointestinal adverse events were mucositis (72% in the sirolimus group versus 16% in the standard group, P = 0.0001) and diarrhoea (36% in the sirolimus versus 20% in the standard group, P = 0.345). Conclusion. Treatment of ADPKD patients with sirolimus with a dose of 1-2 mg/day is safe and does not cause proteinuria or impairment of GFR. Treatment adherence was excellent. (ClinicalTrials.gov number, NCT00346918.
Patients with autosomal dominant polycystic kidney disease have elevated fibroblast growth factor 23 levels and a renal leak of phosphate
Fibroblast growth factor 23 (FGF23) and parathyroid hormone blood levels rise following progressive loss of renal function. Here we measured parameters of phosphate metabolism in 100 patients with autosomal dominant polycystic kidney disease (ADPKD) in stage 1 or 2 of chronic kidney disease, 20 patients with non-diabetic chronic kidney disease, and 26 with type 2 diabetes. Twenty healthy volunteers served as controls. The mean levels of FGF23 were significantly (4-fold) higher in ADPKD compared to non-diabetic and diabetic patients, and healthy volunteers. Mean serum phosphate levels were significantly lower in ADPKD patients compared to non-diabetic and diabetic patients, and the healthy volunteers. The prevalence of hypophosphatemia was 38, 25, 27, and 5% in ADPKD, non-diabetic and diabetic patients, and healthy volunteers, respectively. The tubular maximum of phosphate reabsorption per glomerular filtration rate was lowest in ADPKD patients with a significantly high positive correlation with serum phosphate levels. Estimated glomerular filtration rates were approximately 100 ml/min per 1.73 m(2) in all groups and parathyroid hormone and vitamin D metabolite levels were in the normal range. Thus, FGF23 was substantially elevated in ADPKD patients compared to other CKD patients matched for glomerular filtration rate, and was associated with increased renal phosphate excretion. The mechanism for this anomaly will require further study
Urinary Biomarkers at Early ADPKD Disease Stage
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is characterized by a decline in renal function at late disease stage when the majority of functional renal parenchyma is replaced by cystic tissue. Thus, kidney function, assessed by estimated glomerular filtration rate (eGFR) does not well represent disease burden in early disease. Here, we investigated various urinary markers for tubular injury and their association with disease burden in ADPKD patients at early disease course. METHODS ADPKD patients between 18 and 40 years with an eGFR greater or equal to 70 ml per min per 1.73m2 were eligible for this cross-sectional study. Urinary Neutrophil Gelatinase-Associated Lipocalin (NGAL), Kidney Injury Molecule-1 (KIM-1), and Uromodulin (UMOD) were investigated by Enzyme-Linked Immunosorbent Assay. Clara Cell Protein 16 (CC16) was investigated by Latex Immuno Assay. Cryoscopy was performed to assess urine osmolality and Urinary Albumin-to-Creatinine Ratio (UACR) was calculated. The association and the predictive properties of the markers on eGFR and height adjusted total kidney volume (htTKV) was evaluated using multiple regression analysis, incorporating different control variables for adjustment. Internal bootstrapping validated the obtained results. RESULTS In 139 ADPKD patients (age 31 ±7 years, mean eGFR of 93 ± 19 ml per min per 1.73 m2) the total kidney volume was negatively correlated with eGFR and UMOD and positive associated with age, UACR, KIM-1 and urine osmolality after adjustment for possible confounders. Urine osmolality and htTKV were also associated with eGFR, whereas no association of CC16, NGAL and UMOD with eGFR or htTKV was found. CONCLUSION UACR and urinary KIM-1 are independently associated with kidney size but not with renal function in our study population. Urine osmolality was associated with eGFR and kidney volume following adjustment for multiple confounders. Despite statistical significance, the clinical value of our results is not yet conceivable. Further studies are needed to evaluate the property of the aforementioned biomarkers to assess disease state at early ADPKD stage
Increases in kidney volume in autosomal dominant polycystic kidney disease can be detected within 6 months
Kidney volume growth is considered the best surrogate marker predicting the decline of renal function in autosomal dominant polycystic kidney disease. To assess the therapeutic benefit of new drugs more rapidly, changes in kidney volume need to be determined over a short time interval. Here we measured renal volume changes by manual segmentation volumetry applied to magnetic resonance imaging scans obtained with an optimized T1-weighted acquisition protocol without gadolinium-based contrast agents. One hundred young patients with autosomal dominant polycystic kidney disease and preserved renal function had a significant increase in total kidney volume by 2.71+/-4.82% in 6 months. Volume measurements were highly reproducible and accurate, as indicated by correlation coefficients of 1.000 for intra-observer and 0.996 for inter-observer agreement, with acceptable within-subject standard deviations. The change in renal volume correlated with baseline total kidney volume in all age subgroups. Total kidney volume positively correlated with male gender, hypertension, albuminuria and a history of macrohematuria but negatively with creatinine clearance. Albuminuria was associated with accelerated volume progression. Our study shows that increases in kidney volume can be reliably measured over a 6 month period in early autosomal dominant polycystic kidney disease using unenhanced magnetic resonance imaging sequences
Clinical proof-of-concept trial to assess the therapeutic effect of sirolimus in patients with autosomal dominant polycystic kidney disease: SUISSE ADPKD study
BACKGROUND: Currently there is no effective treatment available to retard cyst growth and to prevent the progression to end-stage renal failure in patients with autosomal dominant polycystic kidney disease (ADPKD). Evidence has recently been obtained from animal experiments that activation of the mammalian target of rapamycin (mTOR) signaling pathway plays a crucial role in cyst growth and renal volume expansion, and that the inhibition of mTOR with rapamycin (sirolimus) markedly slows cyst development and renal functional deterioration. Based on these promising results in animals we have designed and initiated the first randomized controlled trial (RCT) to examine the effectiveness, safety and tolerability of sirolimus to retard disease progression in ADPKD. METHOD/DESIGN: This single center, randomised controlled, open label trial assesses the therapeutic effect, safety and tolerability of the mTOR inhibitor sirolimus (Rapamune) in patients with autosomal dominant polycystic kidney disease and preserved renal function. The primary outcome will be the inhibition of kidney volume growth measured by magnetic resonance imaging (MRI) volumetry. Secondary outcome parameters will be preservation of renal function, safety and tolerability of sirolimus. DISCUSSION: The results from this proof-of-concept RCT will for the first time show whether treatment with sirolimus effectively retards cyst growth in patients with ADPKD
Soluble Klotho and autosomal dominant polycystic kidney disease
Background and objectivesFibroblast growth factor 23 (FGF23) levels are elevated in patients with autosomal dominant polycystic kidney disease (ADPKD) and X-linked hypophosphatemia (XLH), but only the latter is characterized by a renal phosphate wasting phenotype. This study explored potential mechanisms underlying resistance to FGF23 in ADPKD.Design, setting, participants, & measurementsFGF23 and Klotho levels were measured, and renal phosphate transport was evaluated by calculating the ratio of the maximum rate of tubular phosphate reabsorption to GFR (TmP/GFR) in 99 ADPKD patients, 32 CKD patients, 12 XLH patients, and 20 healthy volunteers. ADPKD and CKD patients were classified by estimated GFR (CKD stage 1, ≥90 ml/min per 1.73 m(2); CKD stage 2, 60-89 ml/min per 1.73 m(2)).ResultsADPKD patients had 50% higher FGF23 levels than did XLH patients; TmP/GFR was near normal in most ADPKD patients and very low in XLH patients. Serum Klotho levels were lowest in the ADPKD group, whereas the CKD and XLH groups and volunteers had similar levels. ADPKD patients with an apparent renal phosphate leak had two-fold higher Klotho levels than those without. Serum Klotho values correlated inversely with cyst volume and kidney growth.ConclusionsLoss of Klotho might be a consequence of cyst growth and constrain the phosphaturic effect of FGF23 in most patients with ADPKD. Normal serum Klotho levels were associated with normal FGF23 biologic activity in all XLH patients and a minority of ADPKD patients. Loss of Klotho and FGF23 increase appear to exceed and precede the changes that can be explained by loss of GFR in patients with ADPKD