38 research outputs found

    Clinical and transcriptomic features of persistent exacerbation-prone severe asthma in U-BIOPRED cohort

    Get PDF
    Background: Exacerbation-prone asthma is a feature of severe disease. Yet, the basis for its persistency remains unclear. Objectives: To determine the clinical and transcriptomic features of the frequent-exacerbator (FE) and of persistent FEs (PFE) in U-BIOPRED cohort. Methods: We compared features of FE (≥2 exacerbations in past year) to infrequent exacerbators (IE, <2 exacerbations) and of PFE with repeat ≥2 exacerbations during the following year to persistent IE (PIE). Transcriptomic data in blood, bronchial and nasal epithelial brushings, bronchial biopsies and sputum cells were analysed by gene set variation analysis for 103 gene signatures. Results: Of 317 patients, 62.4 % were FE of whom 63.6% were PFE, while 37.6% were IE of whom 61.3% were PIE. Using multivariate analysis, FE was associated with short-acting beta-agonist use, sinusitis and daily oral corticosteroid use, while PFE with eczema, short-acting beta-agonist use and asthma control index. CEA Cell Adhesion Molecule 5 (CEACAM5) was the only differentially-expressed transcript in bronchial biopsies between PE and IE. There were no differentially-expressed genes in the other 4 compartments. There were higher expression scores for Type 2 , T-helper type-17 and Type 1 pathway signatures together with those associated with viral infections in bronchial biopsies from FE compared to IE, while higher expression scores of Type 2, Type 1 and steroid insensitivity pathway signatures in bronchial biopsies of PFE compared to PIE. Conclusion: FE group and its PFE subgroup are associated with poor asthma control while expressing higher Type 1 and Type 2 activation pathways compared to IE and PIE, respectively

    Sputum proteomics and airway cell transcripts of current and ex-smokers with severe asthma in U-BIOPRED: an exploratory analysis

    Get PDF
    Background: Severe asthma patients with a significant smoking history have airflow obstruction with reported neutrophilia. We hypothesise that multi-omic analysis will enable the definition of smoking and ex-smoking severe asthma molecular phenotypes. Methods: The U-BIOPRED severe asthma patients containing current-smokers (CSA), exsmokers (ESA), non-smokers (NSA) and healthy non-smokers (NH) was examined. Blood and sputum cell counts, fractional exhaled nitric oxide and spirometry were obtained. Exploratory proteomic analysis of sputum supernatants and transcriptomic analysis of bronchial brushings, biopsies and sputum cells was performed. Results: Colony stimulating factor (CSF)2 protein levels were increased in CSA sputum supernatants with azurocidin 1, neutrophil elastase and CXCL8 upregulated in ESA. Phagocytosis and innate immune pathways were associated with neutrophilic inflammation in ESA. Gene Set Variation Analysis of bronchial epithelial cell transcriptome from CSA showed enrichment of xenobiotic metabolism, oxidative stress and endoplasmic reticulum stress compared to other groups. CXCL5 and matrix metallopeptidase 12 genes were upregulated in ESA and the epithelial protective genes, mucin 2 and cystatin SN, were downregulated. Conclusion: Despite little difference in clinical characteristics, CSA were distinguishable from ESA subjects at the sputum proteomic level with CSA having increased CSF2 expression and ESA patients showed sustained loss of epithelial barrier processes

    Stratification of asthma phenotypes by airway proteomic signatures

    Get PDF
    © 2019 Background: Stratification by eosinophil and neutrophil counts increases our understanding of asthma and helps target therapy, but there is room for improvement in our accuracy in prediction of treatment responses and a need for better understanding of the underlying mechanisms. Objective: We sought to identify molecular subphenotypes of asthma defined by proteomic signatures for improved stratification. Methods: Unbiased label-free quantitative mass spectrometry and topological data analysis were used to analyze the proteomes of sputum supernatants from 246 participants (206 asthmatic patients) as a novel means of asthma stratification. Microarray analysis of sputum cells provided transcriptomics data additionally to inform on underlying mechanisms. Results: Analysis of the sputum proteome resulted in 10 clusters (ie, proteotypes) based on similarity in proteomic features, representing discrete molecular subphenotypes of asthma. Overlaying granulocyte counts onto the 10 clusters as metadata further defined 3 of these as highly eosinophilic, 3 as highly neutrophilic, and 2 as highly atopic with relatively low granulocytic inflammation. For each of these 3 phenotypes, logistic regression analysis identified candidate protein biomarkers, and matched transcriptomic data pointed to differentially activated underlying mechanisms. Conclusion: This study provides further stratification of asthma currently classified based on quantification of granulocytic inflammation and provided additional insight into their underlying mechanisms, which could become targets for novel therapies

    Severe asthma exists despite suppressed tissue inflammation: findings of the U-BIOPRED study

    Get PDF
    The U-BIOPRED study is a multicentre European study aimed at a better understanding of severe asthma. It included three steroid-treated adult asthma groups (severe nonsmokers (SAn group), severe current/ex-smokers (SAs/ex group) and those with mild–moderate disease (MMA group)) and healthy controls (HC group). The aim of this cross-sectional, bronchoscopy substudy was to compare bronchial immunopathology between these groups. In 158 participants, bronchial biopsies and bronchial epithelial brushings were collected for immunopathologic and transcriptomic analysis. Immunohistochemical analysis of glycol methacrylate resin-embedded biopsies showed there were more mast cells in submucosa of the HC group (33.6 mm⁻ ²) compared with both severe asthma groups (SAn: 17.4 mm⁻ ², p<0.001; SAs/ex: 22.2 mm⁻ ², p=0.01) and with the MMA group (21.2 mm⁻ ², p=0.01). The number of CD4+ lymphocytes was decreased in the SAs/ex group (4.7 mm⁻ ²) compared with the SAn (11.6 mm⁻ ², p=0.002), MMA (10.1 mm⁻ ², p=0.008) and HC (10.6 mm⁻ ², p<0.001) groups. No other differences were observed. Affymetrix microarray analysis identified seven probe sets in the bronchial brushing samples that had a positive relationship with submucosal eosinophils. These mapped to COX-2 (cyclo-oxygenase-2), ADAM-7 (disintegrin and metalloproteinase domain-containing protein 7), SLCO1A2 (solute carrier organic anion transporter family member 1A2), TMEFF2 (transmembrane protein with epidermal growth factor like and two follistatin like domains 2) and TRPM-1 (transient receptor potential cation channel subfamily M member 1); the remaining two are unnamed. We conclude that in nonsmoking and smoking patients on currently recommended therapy, severe asthma exists despite suppressed tissue inflammation within the proximal airway wall

    Transcriptomic gene signatures associated with persistent airflow limitation in patients with severe asthma

    Get PDF
    A proportion of severe asthma patients suffers from persistent airflow limitation (PAL), often associated with more symptoms and exacerbations. Little is known about the underlying mechanisms. Here, our aim was to discover unexplored potential mechanisms using Gene Set Variation Analysis (GSVA), a sensitive technique that can detect underlying pathways in heterogeneous samples. Severe asthma patients from the U-BIOPRED cohort with PAL (post-bronchodilator forced expiratory volume in 1 s/forced vital capacity ratio below the lower limit of normal) were compared with those without PAL. Gene expression was assessed on the total RNA of sputum cells, nasal brushings, and endobronchial brushings and biopsies. GSVA was applied to identify differentially enriched predefined gene signatures based on all available gene expression publications and data on airways disease. Differentially enriched gene signatures were identified in nasal brushings (n=1), sputum (n=9), bronchial brushings (n=1) and bronchial biopsies (n=4) that were associated with response to inhaled steroids, eosinophils, interleukin-13, interferon-α, specific CD4+ T-cells and airway remodelling. PAL in severe asthma has distinguishable underlying gene networks that are associated with treatment, inflammatory pathways and airway remodelling. These findings point towards targets for the therapy of PAL in severe asthma

    Epithelial dysregulation in obese severe asthmatics with gastro-oesophageal reflux

    Get PDF

    A computational framework for complex disease stratification from multiple large-scale datasets.

    Get PDF
    BACKGROUND: Multilevel data integration is becoming a major area of research in systems biology. Within this area, multi-'omics datasets on complex diseases are becoming more readily available and there is a need to set standards and good practices for integrated analysis of biological, clinical and environmental data. We present a framework to plan and generate single and multi-'omics signatures of disease states. METHODS: The framework is divided into four major steps: dataset subsetting, feature filtering, 'omics-based clustering and biomarker identification. RESULTS: We illustrate the usefulness of this framework by identifying potential patient clusters based on integrated multi-'omics signatures in a publicly available ovarian cystadenocarcinoma dataset. The analysis generated a higher number of stable and clinically relevant clusters than previously reported, and enabled the generation of predictive models of patient outcomes. CONCLUSIONS: This framework will help health researchers plan and perform multi-'omics big data analyses to generate hypotheses and make sense of their rich, diverse and ever growing datasets, to enable implementation of translational P4 medicine

    Identifying the combinatorial control of signal-dependent transcription factors.

    No full text
    The effectiveness of immune responses depends on the precision of stimulus-responsive gene expression programs. Cells specify which genes to express by activating stimulus-specific combinations of stimulus-induced transcription factors (TFs). Their activities are decoded by a gene regulatory strategy (GRS) associated with each response gene. Here, we examined whether the GRSs of target genes may be inferred from stimulus-response (input-output) datasets, which remains an unresolved model-identifiability challenge. We developed a mechanistic modeling framework and computational workflow to determine the identifiability of all possible combinations of synergistic (AND) or non-synergistic (OR) GRSs involving three transcription factors. Considering different sets of perturbations for stimulus-response studies, we found that two thirds of GRSs are easily distinguishable but that substantially more quantitative data is required to distinguish the remaining third. To enhance the accuracy of the inference with timecourse experimental data, we developed an advanced error model that avoids error overestimates by distinguishing between value and temporal error. Incorporating this error model into a Bayesian framework, we show that GRS models can be identified for individual genes by considering multiple datasets. Our analysis rationalizes the allocation of experimental resources by identifying most informative TF stimulation conditions. Applying this computational workflow to experimental data of immune response genes in macrophages, we found that a much greater fraction of genes are combinatorially controlled than previously reported by considering compensation among transcription factors. Specifically, we revealed that a group of known NFκB target genes may also be regulated by IRF3, which is supported by chromatin immuno-precipitation analysis. Our study provides a computational workflow for designing and interpreting stimulus-response gene expression studies to identify underlying gene regulatory strategies and further a mechanistic understanding

    Kinetics of mRNA nuclear export regulate innate immune response gene expression.

    No full text
    The abundance and stimulus-responsiveness of mature mRNA is thought to be determined by nuclear synthesis, processing, and cytoplasmic decay. However, the rate and efficiency of moving mRNA to the cytoplasm almost certainly contributes, but has rarely been measured. Here, we investigated mRNA export rates for innate immune genes. We generated high spatio-temporal resolution RNA-seq data from endotoxin-stimulated macrophages and parameterized a mathematical model to infer kinetic parameters with confidence intervals. We find that the effective chromatin-to-cytoplasm export rate is gene-specific, varying 100-fold: for some genes, less than 5% of synthesized transcripts arrive in the cytoplasm as mature mRNAs, while others show high export efficiency. Interestingly, effective export rates do not determine temporal gene responsiveness, but complement the wide range of mRNA decay rates; this ensures similar abundances of short- and long-lived mRNAs, which form successive innate immune response expression waves

    IκBα is required for full transcriptional induction of some NFκB-regulated genes in response to TNF in MCF-7 cells

    No full text
    Inflammatory stimuli triggers the degradation of three inhibitory κB (IκB) proteins, allowing for nuclear translocation of nuclear factor-κB (NFκB) for transcriptional induction of its target genes. Of these three, IκBα is a well-known negative feedback regulator that limits the duration of NFκB activity. We sought to determine whether IκBα's role in enabling or limiting NFκB activation is important for tumor necrosis factor (TNF)-induced gene expression in human breast cancer cells (MCF-7). Contrary to our expectations, many more TNF-response genes showed reduced induction than enhanced induction in IκBα knockdown cells. Mathematical modeling was used to investigate the underlying mechanism. We found that the reduced activation of some NFκB target genes in IκBα-deficient cells could be explained by the incoherent feedforward loop (IFFL) model. In addition, for a subset of genes, prolonged NFκB activity due to loss of negative feedback control did not prolong their transient activation; this implied a multi-state transcription cycle control of gene induction. Genes encoding key inflammation-related transcription factors, such as JUNB and KLF10, were found to be best represented by a model that contained both the IFFL and the transcription cycle motif. Our analysis sheds light on the regulatory strategies that safeguard inflammatory gene expression from overproduction and repositions the function of IκBα not only as a negative feedback regulator of NFκB but also as an enabler of NFκB-regulated stimulus-responsive inflammatory gene expression. This study indicates the complex involvement of IκBα in the inflammatory response to TNF that is induced by radiation therapy in breast cancer
    corecore