55 research outputs found

    A Model to optimize a microwave PBG accelerator based on generic unit cell

    Get PDF
    In this paper a numerical method, based on the well known Floquet-Bloch theory, useful to analyze the physical properties of a PBG based accelerator, is presented. The proposed model has been developed to analyze a 2D lattice characterized by a generic inclination angle between the two primitive translation vectors, thus resulting very useful when a periodic structure without an equilateral triangular or square cell has to be investigated. The numerical method has been optimized in order to account several number of space harmonics with a low CPU time and memory consumption. Comparisons with more complex numerical methods demonstrate the accuracy of our model. Several simulations have been performed to find all the geometrical parameters including the inclination angle of the unit cell, filling factor and index contrast. The proposed method, through an optimization procedure of the photonic band structure, allows to obtain a large spectral purity, high order mode suppression and high Q-values

    Visualizing Cancer

    Get PDF
    Imaging has had a profound impact on our ability to understand and treat cancer. We invited some experts to discuss imaging approaches that can be used in various aspects of cancer research, from investigating the complexity and diversity of cancer cells and their environments to guiding clinical decision-making

    Early Progression in Non-Small Cell Lung Cancer (NSCLC) with High PD-L1 Treated with Pembrolizumab in First-Line Setting: A Prognostic Scoring System Based on Clinical Features

    Get PDF
    Background: Pembrolizumab is approved in monotherapy for the first-line (1L) of advanced or metastatic NSCLC patients with high PD-L1 (≄50%). Despite a proportion of patients achieve long-term survival, about one-third of patients experience detrimental survival outcomes, including early death, hyperprogression, and fast progression. The impact of clinical factors on early progression (EP) development has not been widely explored. Methods: We designed a retrospective, multicenter study involving five Italian centers, in patients with metastatic NSCLC with PD-L1 ≄ 50%, treated with Pembrolizumab in a 1L setting. EP was defined as a progressive disease within three months from pembrolizumab initiation. Baseline clinical factors of patients with and without EP were collected and analyzed. Logistic regression was performed to identify clinical factors associated with EP and an EP prognostic score was developed based on the logistic model. Results: Overall, 321 out of 336 NSCLC patients treated with 1L pembrolizumab provided all the data for the analysis. EP occurred in 137 (42.7%) patients; the median PFS was 3.8 months (95% CI: 2.9–4.7), and median OS was not reached in the entire study population. Sex, Eastern Cooperative Oncology Group (ECOG) performance status (PS), steroids, metastatic sites ≄2, and the presence of liver/pleural metastasis were confirmed as independent factors for EP by multivariate analysis. By combining these factors, we developed an EP prognostic score ranging from 0–13, with three-risk group stratification: 0–2 (good prognosis), 3–6 (intermediate prognosis), and 7–13 (poor prognosis). The area under the curve (AUC) of the model was 0.76 (95% CI: 0.70–0.81). Conclusions: We identified six clinical factors independently associated with EP. We developed a prognostic score model for EP-risk to potentially improve clinical practice and patient selection for 1L pembrolizumab in NSCLC with high PD-L1, in the real-world clinical setting

    Bone metastases and immunotherapy in patients with advanced non-small-cell lung cancer

    Get PDF
    Background Bone metastases (BoM) are a negative prognostic factor in non-small-cell lung cancer (NSCLC). Beyond its supportive role, bone is a hematopoietic organ actively regulating immune system. We hypothesized that BoM may influence sensitivity to immunotherapy. Methods Pretreated non-squamous (cohort A) and squamous (cohort B) NSCLCs included in the Italian Expanded Access Program were evaluated for nivolumab efficacy according to BoM. Results Cohort A accounted for 1588 patients with non-squamous NSCLC, including 626 (39%) with (BoM+) and 962 (61%) without BoM (BoM-). Cohort B accounted for 371 patients with squamous histology including 120 BoM+ (32%) and 251 (68%) BoM- cases. BoM+ had lower overall response rate (ORR; Cohort A: 12% versus 23%, p < 0.0001; Cohort B: 13% versus 22%, p = 0.04), shorter progression free survival (PFS; Cohort A: 3.0 versus 4.0 months, p < 0.0001; Cohort B: 2.7 versus 5.2 months, p < 0.0001) and overall survival (OS; Cohort A: 7.4 versus 15.3 months, p < 0.0001; Cohort B: 5.0 versus 10.9 months, p < 0.0001). Moreover, BoM negatively affected outcome irrespective of performance status (PS; OS in both cohorts: p < 0.0001) and liver metastases (OS cohort A: p < 0.0001; OS Cohort B: p = 0.48). At multivariate analysis, BoM independently associated with higher risk of death (cohort A: HR 1.50; cohort B: HR 1.78). Conclusions BoM impairs immunotherapy efficacy. Accurate bone staging should be included in clinical trials with immunotherapy

    Interleukin-18 produced by bone marrow- derived stromal cells supports T-cell acute leukaemia progression

    Get PDF
    International audienceDevelopment of novel therapies is critical for T-cell acute leukae-mia (T-ALL). Here, we investigated the effect of inhibiting the MAPK/MEK/ERK pathway on T-ALL cell growth. Unexpectedly, MEK inhibitors (MEKi) enhanced growth of 70% of human T-ALL cell samples cultured on stromal cells independently of NOTCH activa-tion and maintained their ability to propagate in vivo. Similar results were obtained when T-ALL cells were cultured with ERK1/ 2-knockdown stromal cells or with conditioned medium from MEKi-treated stromal cells. Microarray analysis identified interleu-kin 18 (IL-18) as transcriptionally up-regulated in MEKi-treated MS5 cells. Recombinant IL-18 promoted T-ALL growth in vitro, whereas the loss of function of IL-18 receptor in T-ALL blast cells decreased blast proliferation in vitro and in NSG mice. The NFKB pathway that is downstream to IL-18R was activated by IL-18 in blast cells. IL-18 circulating levels were increased in T-ALL-xeno-grafted mice and also in T-ALL patients in comparison with controls. This study uncovers a novel role of the pro-inflammatory cytokine IL-18 and outlines the microenvironment involvement in human T-ALL development

    Treatment with COLchicine in hospitalized patients affected by COVID-19: The COLVID-19 trial

    Get PDF
    Objective: To evaluate whether the addition of colchicine to standard of care (SOC) results in better outcomes in hospitalized patients with COVID-19. Design: This interventional, multicenter, randomized, phase 2 study, evaluated colchicine 1.5 mg/day added to SOC in hospitalized COVID-19 patients (COLVID-19 trial) and 227 patients were recruited. The primary outcome was the rate of critical disease in 30 days defined as need of mechanical ventilation, intensive care unit (ICU), or death. Results: 152 non-anti-SARS-CoV-2-vaccinated patients (colchicine vs controls: 77vs75, mean age 69.1±13.1 vs 67.9±15 years, 39% vs 33.3% females, respectively) were analyzed. There was no difference in co-primary end-points between patients treated with colchicine compared to controls (mechanical ventilation 5.2% vs 4%, ICU 1.3% vs 5.3%, death 9.1% vs 6.7%, overall 11 (14.3%) vs 10 (13.3%) patients, P=ns, respectively). Mean time to discharge was similar (colchicine vs controls 14.1±10.4 vs 14.7±8.1 days). Older age (>60 years, P=0.025), P/F<275 mmHg (P=0.005), AST>40 U/L (P<0.001), pre-existent heart (P=0.02), lung (P=0.003), upper-gastrointestinal (P=0.014), lower-gastrointestinal diseases (P=0.009) and cancer (P=0.008) were predictive of achieving the primary outcome. Diarrhoea (9.1% vs 0%, p=0.0031) and increased levels of AST at 6 days (76.9±91.8 vs 33.5±20.7 U/l, P=0.016) were more frequent in the colchicine group. Conclusion: Colchicine did not reduce the rate and the time to the critical stage. Colchicine was relatively safe although adverse hepatic effects require caution. We confirm that older (>60 years) patients with comorbidities are characterized by worse outcome

    A Neutralizing RNA Aptamer against EGFR Causes Selective Apoptotic Cell Death

    Get PDF
    Nucleic acid aptamers have been developed as high-affinity ligands that may act as antagonists of disease-associated proteins. Aptamers are non immunogenic and characterised by high specificity and low toxicity thus representing a valid alternative to antibodies or soluble ligand receptor traps/decoys to target specific cancer cell surface proteins in clinical diagnosis and therapy. The epidermal growth factor receptor (EGFR) has been implicated in the development of a wide range of human cancers including breast, glioma and lung. The observation that its inhibition can interfere with the growth of such tumors has led to the design of new drugs including monoclonal antibodies and tyrosine kinase inhibitors currently used in clinic. However, some of these molecules can result in toxicity and acquired resistance, hence the need to develop novel kinds of EGFR-targeting drugs with high specificity and low toxicity. Here we generated, by a cell-Systematic Evolution of Ligands by EXponential enrichment (SELEX) approach, a nuclease resistant RNA-aptamer that specifically binds to EGFR with a binding constant of 10 nM. When applied to EGFR-expressing cancer cells the aptamer inhibits EGFR-mediated signal pathways causing selective cell death. Furthermore, at low doses it induces apoptosis even of cells that are resistant to the most frequently used EGFR-inhibitors, such as gefitinib and cetuximab, and inhibits tumor growth in a mouse xenograft model of human non-small-cell lung cancer (NSCLC). Interestingly, combined treatment with cetuximab and the aptamer shows clear synergy in inducing apoptosis in vitro and in vivo. In conclusion, we demonstrate that this neutralizing RNA-aptamer is a promising bio-molecule that can be developed as a more effective alternative to the repertoire of already existing EGFR-inhibitors

    Versatile humanized niche model enables study of normal and malignant human hematopoiesis

    Get PDF
    The BM niche comprises a tightly controlled microenvironment formed by specific tissue and cells that regulates the behavior of hematopoietic stem cells (HSCs). Here, we have provided a 3D model that is tunable in different BM niche components and useful, both in vitro and in vivo, for studying the maintenance of normal and malignant hematopoiesis. Using scaffolds, we tested the capacity of different stromal cell types to support human HSCs. Scaffolds coated with human mesenchymal stromal cells (hMSCs) proved to be superior in terms of HSC engraftment and long-term maintenance when implanted in vivo. Moreover, we found that hMSC-coated scaffolds can be modulated to form humanized bone tissue, which was also able to support human HSC engraftment. Importantly, hMSC-coated humanized scaffolds were able to support the growth of leukemia patient cells in vivo, including the growth of samples that would not engraft the BM of immunodeficient mice. These results demonstrate that an s.c. implantation approach in a 3D carrier scaffold seeded with stromal cells is an effective in vivo niche model for studying human hematopoiesis. The various niche components of this model can be changed depending on the context to improve the engraftment of nonengrafting acute myeloid leukemia (AML) samples
    • 

    corecore