13 research outputs found

    Study on the rare radiative decay Bc→Ds∗γB_c \to D_s^*\gamma in the standard model and multiscale walking technicolor model

    Full text link
    Applying the perturbative QCD ( PQCD ) method, we study the decay Bc→Ds∗γB_c\rightarrow D_s^*\gamma in the standard model and multiscale walking technicolor model. In the SM, we find that the contribution of weak annihilation is more important than that of the electromagnetic penguin. The presence of Pseudo-Goldstone-Bosons in the MWTCM leads to a large enhancement in the rate of Bc→Ds∗γB_c\rightarrow D_s^*\gamma, but this model is in conflict with the branching ratio of Z→bb‟Z\rightarrow b\overline b ( RbR_b ) and the CLEO data on the branching ratio BR ( b→sÎłb\rightarrow s\gamma ). If topcolor is further introduced, the calculated results in the topcolor assisted MWTCM can be suppressed and be in agreement with the CLEO data for a certain range of the parameters.Comment: 16 pages, Latex, no macros, 1 figure(in Latex), hard copy is available upon request. to appear in Phys. Rev.

    ILC Reference Design Report Volume 1 - Executive Summary

    No full text
    The International Linear Collider (ILC) is a 200-500 GeV center-of-mass high-luminosity linear electron-positron collider, based on 1.3 GHz superconducting radio-frequency (SCRF) accelerating cavities. The ILC has a total footprint of about 31 km and is designed for a peak luminosity of 2x10^34 cm^-2s^-1. This report is the Executive Summary (Volume I) of the four volume Reference Design Report. It gives an overview of the physics at the ILC, the accelerator design and value estimate, the detector concepts, and the next steps towards project realization.The International Linear Collider (ILC) is a 200-500 GeV center-of-mass high-luminosity linear electron-positron collider, based on 1.3 GHz superconducting radio-frequency (SCRF) accelerating cavities. The ILC has a total footprint of about 31 km and is designed for a peak luminosity of 2x10^34 cm^-2s^-1. This report is the Executive Summary (Volume I) of the four volume Reference Design Report. It gives an overview of the physics at the ILC, the accelerator design and value estimate, the detector concepts, and the next steps towards project realization
    corecore