26 research outputs found
Incorporating bio-physical sciences into a decision support tool for sustainable urban planning
Deciding upon optimum planning actions in terms of sustainable urban planning involves the consideration of multiple environmental and socio-economic criteria. The transformation of natural landscapes to urban areas affects energy and material fluxes. An important aspect of the urban environment is the urban metabolism, and changes in such metabolism need to be considered for sustainable planning decisions. A spatial Decision Support System (DSS) prototyped within the European FP7-funded project BRIDGE (sustainaBle uRban plannIng Decision support accountinG for urban mEtabolism), enables accounting for the urban metabolism of planning actions, by exploiting the current knowledge and technology of biophysical sciences. The main aim of the BRIDGE project was to bridge the knowledge and communication gap between urban planners and environmental scientists and to illustrate the advantages of considering detailed environmental information in urban planning processes. The developed DSS prototype integrates biophysical observations and simulation techniques with socio-economic aspects in fiveEuropean cities, selected as case studies for the pilot application of the tool. This paper describes the design and implementation of the BRIDGE DSS prototype, illustrates some examples of use, and highlights the need for further research and development in the field
Ensembl Genomes 2022: an expanding genome resource for non-vertebrates
Ensembl Genomes (https://www.ensemblgenomes.org) provides access to non-vertebrate genomes and analysis complementing vertebrate resources developed by the Ensembl project (https://www.ensembl.org). The two resources collectively present genome annotation through a consistent set of interfaces spanning the tree of life presenting genome sequence, annotation, variation, transcriptomic data and comparative analysis. Here we present our largest increase in plant, metazoan and fungal genomes since the project’s inception creating one of the world’s most comprehensive genomic resources and describe our efforts to reduce genome redundancy in our Bacteria portal. We also detail our new efforts in gene annotation, our emerging support for pangenome analysis and efforts to accelerate data dissemination through the Ensembl Rapid Release resource. We also present our new AlphaFold visualisation. Finally, we present details of our future plans including updates on our integration with Ensembl, and how we plan to improve our support for the microbial research community. Software and data are made available without restriction via our website, online tools platform and programmatic interfaces (available under an Apache 2.0 license). Data updates are synchronised with Ensembl’s release cycle
Recommended from our members
Toward an improved representation of middle atmospheric dynamics thanks to the ARISE project
This paper reviews recent progress toward understanding the dynamics of the middle atmosphere in the framework of the Atmospheric Dynamics Research InfraStructure in Europe (ARISE) initiative. The middle atmosphere, integrating the stratosphere and mesosphere, is a crucial region which influences tropospheric weather and climate. Enhancing the understanding of middle atmosphere dynamics requires improved measurement of the propagation and breaking of planetary and gravity waves originating in the lowest levels of the atmosphere. Inter-comparison studies have shown large discrepancies between observations and models, especially during unresolved disturbances such as sudden stratospheric warmings for which model accuracy is poorer due to a lack of observational constraints. Correctly predicting the variability of the middle atmosphere can lead to improvements in tropospheric weather forecasts on timescales of weeks to season. The ARISE project integrates different station networks providing observations from ground to the lower thermosphere, including the infrasound system developed for the Comprehensive Nuclear-Test-Ban Treaty verification, the Lidar Network for the Detection of Atmospheric Composition Change, complementary meteor radars, wind radiometers, ionospheric sounders and satellites. This paper presents several examples which show how multi-instrument observations can provide a better description of the vertical dynamics structure of the middle atmosphere, especially during large disturbances such as gravity waves activity and stratospheric warming events. The paper then demonstrates the interest of ARISE data in data assimilation for weather forecasting and re-analyzes the determination of dynamics evolution with climate change and the monitoring of atmospheric extreme events which have an atmospheric signature, such as thunderstorms or volcanic eruptions
The Gene Ontology knowledgebase in 2023
The Gene Ontology (GO) knowledgebase (http://geneontology.org) is a comprehensive resource concerning the functions of genes and gene products (proteins and noncoding RNAs). GO annotations cover genes from organisms across the tree of life as well as viruses, though most gene function knowledge currently derives from experiments carried out in a relatively small number of model organisms. Here, we provide an updated overview of the GO knowledgebase, as well as the efforts of the broad, international consortium of scientists that develops, maintains, and updates the GO knowledgebase. The GO knowledgebase consists of three components: (1) the GO-a computational knowledge structure describing the functional characteristics of genes; (2) GO annotations-evidence-supported statements asserting that a specific gene product has a particular functional characteristic; and (3) GO Causal Activity Models (GO-CAMs)-mechanistic models of molecular "pathways" (GO biological processes) created by linking multiple GO annotations using defined relations. Each of these components is continually expanded, revised, and updated in response to newly published discoveries and receives extensive QA checks, reviews, and user feedback. For each of these components, we provide a description of the current contents, recent developments to keep the knowledgebase up to date with new discoveries, and guidance on how users can best make use of the data that we provide. We conclude with future directions for the project
The Gene Ontology knowledgebase in 2023
The Gene Ontology (GO) knowledgebase (http://geneontology.org) is a comprehensive resource concerning the functions of genes and gene products (proteins and noncoding RNAs). GO annotations cover genes from organisms across the tree of life as well as viruses, though most gene function knowledge currently derives from experiments carried out in a relatively small number of model organisms. Here, we provide an updated overview of the GO knowledgebase, as well as the efforts of the broad, international consortium of scientists that develops, maintains, and updates the GO knowledgebase. The GO knowledgebase consists of three components: (1) the GO-a computational knowledge structure describing the functional characteristics of genes; (2) GO annotations-evidence-supported statements asserting that a specific gene product has a particular functional characteristic; and (3) GO Causal Activity Models (GO-CAMs)-mechanistic models of molecular "pathways" (GO biological processes) created by linking multiple GO annotations using defined relations. Each of these components is continually expanded, revised, and updated in response to newly published discoveries and receives extensive QA checks, reviews, and user feedback. For each of these components, we provide a description of the current contents, recent developments to keep the knowledgebase up to date with new discoveries, and guidance on how users can best make use of the data that we provide. We conclude with future directions for the project
Nurses' perceptions of aids and obstacles to the provision of optimal end of life care in ICU
Contains fulltext :
172380.pdf (publisher's version ) (Open Access
Accounting for urban metabolism in urban planning the case of BRIDGE
Urban metabolism considers a city as a system and distinguishes between energy and material flows. Bottom-up approaches are based on quantitative estimates of urban metabolism components at local scale, considering the urban metabolism as the 3D exchange and transformation of energy and matter between a city and its environment. Decision Support Systems (DSS) are capable of supporting complex decision making and of solving semi-structured or unstructured problems through a computer interface that presents results in a readily understandable form. The main goal of the FP7 project BRIDGE is to develop a DSS and use it to propose modifications on the metabolism of urban systems towards sustainability by evaluating how planning alternatives can modify the physical flows of the above urban metabolism components. The BRIDGE DSS integrates bio-physical observations and modelling with socioeconomic issues in five European cities that were selected as case studies for pilot application. This study describes the design and implementation of the BRIDGE DSS