373 research outputs found

    Control system design using optimization techniques Final report

    Get PDF
    Optimization techniques for control of fuel valve systems for air breathing jet engines and 40-60 inlet control problem

    Topics concerning state variable feedback in automatic control systems. Part 1 - Specification. Part 2 - Sensitivity. Part 3 - Intentional nonlinearities. Part 4 - Unavailable states

    Get PDF
    Specifications, sensitivity, intentional nonlinearities, and unavailable states concerned with state variable feedback in automatic control system

    Search for Mars lander/rover/sample-return sites: A status review

    Get PDF
    Ten Mars sites were studied in the USA for four years. The sites are the Chasma Boreale (North Pole), Planum Australe (South Pole), Olympus Rupes, Mangala Valles, Memnonia Sulci, Candor Chasma, Kasel Valles, Nilosyrtis Mensae, Elysium Montes, and Apollinaris Patera. Seven sites are being studied by the USSR; their prime sites are located at the east mouth of Kasel Valles and near Uranius Patera. Thirteen geological maps of the first six USA sites are compiled and in review. Maps of the Mangala East and West sites at 1:1/2 million scale and a 1:2 million scale map show evidence of three episodes of small-channel formation interspersed with episodes of volcanism and tectonism that span the period from 3.5 to 0.6 b.y. ago. The tectonic and geological history of Mars, both ancient and modern, can be elucidated by sampling volcanic and fluvial geologic units at equatorial sites and layered deposits at polar sites. The evidence appears clear for multiple episodes of fluvial channeling, including some that are quite recent; this evidence contrasts with the theses of Baker and Partridge (1986) and many others that all channels are ancient. Verification of this hypothesis by Mars Observer will be an important step forward in the perception of the history of Mars

    The association between histamine 2 receptor antagonist use and Clostridium difficile infection: a systematic review and meta-analysis.

    Get PDF
    Background Clostridium difficile infection (CDI) is a major health problem. Epidemiological evidence suggests that there is an association between acid suppression therapy and development of CDI. Purpose We sought to systematically review the literature that examined the association between histamine 2 receptor antagonists (H2RAs) and CDI. Data source We searched Medline, Current Contents, Embase, ISI Web of Science and Elsevier Scopus from 1990 to 2012 for all analytical studies that examined the association between H2RAs and CDI. Study selection Two authors independently reviewed the studies for eligibility. Data extraction Data about studies characteristics, adjusted effect estimates and quality were extracted. Data synthesis Thirty-five observations from 33 eligible studies that included 201834 participants were analyzed. Studies were performed in 6 countries and nine of them were multicenter. Most studies did not specify the type or duration of H2RAs therapy. The pooled effect estimate was 1.44, 95% CI (1.22–1.7), I2 = 70.5%. This association was consistent across different subgroups (by study design and country) and there was no evidence of publication bias. The pooled effect estimate for high quality studies was 1.39 (1.15–1.68), I2 = 72.3%. Meta-regression analysis of 10 study-level variables did not identify sources of heterogeneity. In a speculative analysis, the number needed to harm (NNH) with H2RAs at 14 days after hospital admission in patients receiving antibiotics or not was 58, 95% CI (37, 115) and 425, 95% CI (267, 848), respectively. For the general population, the NNH at 1 year was 4549, 95% CI (2860, 9097). Conclusion In this rigorous systematic review and meta-analysis, we observed an association between H2RAs and CDI. The absolute risk of CDI associated with H2RAs is highest in hospitalized patients receiving antibiotics

    A valley-spin qubit in a carbon nanotube

    Full text link
    Although electron spins in III-V semiconductor quantum dots have shown great promise as qubits, a major challenge is the unavoidable hyperfine decoherence in these materials. In group IV semiconductors, the dominant nuclear species are spinless, allowing for qubit coherence times that have been extended up to seconds in diamond and silicon. Carbon nanotubes are a particularly attractive host material, because the spin-orbit interaction with the valley degree of freedom allows for electrical manipulation of the qubit. In this work, we realise such a qubit in a nanotube double quantum dot. The qubit is encoded in two valley-spin states, with coherent manipulation via electrically driven spin resonance (EDSR) mediated by a bend in the nanotube. Readout is performed by measuring the current in Pauli blockade. Arbitrary qubit rotations are demonstrated, and the coherence time is measured via Hahn echo. Although the measured decoherence time is only 65 ns in our current device, this work offers the possibility of creating a qubit for which hyperfine interaction can be virtually eliminated

    Effect of Oscillating Landau Bandwidth on the Integer Quantum Hall Effect in a Unidirectional Lateral Superlattice

    Full text link
    We have measured activation gaps for odd-integer quantum Hall states in a unidirectional lateral superlattice (ULSL) -- a two-dimensional electron gas (2DEG) subjected to a unidirectional periodic modulation of the electrostatic potential. By comparing the activation gaps with those simultaneously measured in the adjacent section of the same 2DEG sample without modulation, we find that the gaps are reduced in the ULSL by an amount corresponding to the width acquired by the Landau levels through the introduction of the modulation. The decrement of the activation gap varies with the magnetic field following the variation of the Landau bandwidth due to the commensurability effect. Notably, the decrement vanishes at the flat band conditions.Comment: 7 pages, 6 figures, minor revisio

    High Resolution Spectroscopy of Two-Dimensional Electron Systems

    Full text link
    Spectroscopic methods involving the sudden injection or ejection of electrons in materials are a powerful probe of electronic structure and interactions. These techniques, such as photoemission and tunneling, yield measurements of the "single particle" density of states (SPDOS) spectrum of a system. The SPDOS is proportional to the probability of successfully injecting or ejecting an electron in these experiments. It is equal to the number of electronic states in the system able to accept an injected electron as a function of its energy and is among the most fundamental and directly calculable quantities in theories of highly interacting systems. However, the two-dimensional electron system (2DES), host to remarkable correlated electron states such as the fractional quantum Hall effect, has proven difficult to probe spectroscopically. Here we present an improved version of time domain capacitance spectroscopy (TDCS) that now allows us to measure the SPDOS of a 2DES with unprecedented fidelity and resolution. Using TDCS, we perform measurements of a cold 2DES, providing the first direct measurements of the single-particle exchange-enhanced spin gap and single particle lifetimes in the quantum Hall system, as well as the first observations of exchange splitting of Landau levels not at the Fermi surface. The measurements reveal the difficult to reach and beautiful structure present in this highly correlated system far from the Fermi surface.Comment: There are formatting and minor textual differences between this version and the published version in Nature (follow the DOI link below

    Microscopic Polarization in Bilayer Graphene

    Full text link
    Bilayer graphene has drawn significant attention due to the opening of a band gap in its low energy electronic spectrum, which offers a promising route to electronic applications. The gap can be either tunable through an external electric field or spontaneously formed through an interaction-induced symmetry breaking. Our scanning tunneling measurements reveal the microscopic nature of the bilayer gap to be very different from what is observed in previous macroscopic measurements or expected from current theoretical models. The potential difference between the layers, which is proportional to charge imbalance and determines the gap value, shows strong dependence on the disorder potential, varying spatially in both magnitude and sign on a microscopic level. Furthermore, the gap does not vanish at small charge densities. Additional interaction-induced effects are observed in a magnetic field with the opening of a subgap when the zero orbital Landau level is placed at the Fermi energy

    Clostridium difficile in Retail Meat Products, USA, 2007

    Get PDF
    To determine the presence of Clostridium difficile, we sampled cooked and uncooked meat products sold in Tucson, Arizona. Forty-two percent contained toxigenic C. difficile strains (either ribotype 078/toxinotype V [73%] or 027/toxinotype III [NAP1 or NAP1-related; 27%]). These findings indicate that food products may play a role in interspecies C. difficile transmission
    corecore