N $20-24637$

CONTROL SYSTEM DESIGN USING OPTIMIZATION TECHNIQUES
R. T. Stefan
J. H. Dial
T. L. Williams
D. E. Silverstone

August, 1969

Prepared under NASA Contract NGR-03-002-115
CASE FILE
COPY

ENGINEERING EXPERIMENT STATION COLLEGE OF ENGINEERING THE UNIVERSITY OF ARIZONA TUCSON, ARIZONA

Final Report

CONTROL SYSTEM DESIGN USING OPTIMIZATION TECHNIQUES

by

R. T. Stefani
J. H. Dial
T. L. Williams
D. E. Silverstone

August, 1969

Distribution of this report is provided in the interest of information exchange. Responsibility for the contents resides in the authors or organization that prepared it.

Prepared under Contract NGR-03-002-115

The University of Arizona
Tucson, Arizona
for

Lewis Research Center
National Aeronautics and Space Administration

TABLE OF CONTENTS

Page
PREFACE iii
SEQUENTIAL UNCONSTRAINED MINIMIZATION by R. T. Stefani 1
Introduction 1
Optimal Procedure 3
Computer Program for the Design Procedure 8
Application to the Fuel Valve Servo Problem 13
Summary and Conclusions 24
Program Output 26
PARALLEL TANGENTS by J. H. Dial 34
Introduction 34
Optimization Procedure 35
The Partan Algorithm 35
Gradient Calculation 37
Vector Search 38
The Program 40
Application to the Fuel Valve Problem 43
Conclusion 48
References 49
Program Output 50
PATTERN SEARCH by T. L. Williams 55
Introduction 55
Pattern Search. 56
The 40-60 Inlet Control Problem 59
Performance Specification 61
Computer Results 61
Computer Program 66
Program Output 68
VARIABLE METRIC by D. E. Silverstone 79
Introduction 79
Optimization Procedure 80
Initialization 80
Computation Loop 80
Discussion of Computer Programs 82
Application to Inlet Bypass Door Servo 85

TABLE OF CONTENTS--Continued

Page

Numerical Results. 86
Conclusions.. 87
References... 88
Program Output... 89

PREFACE

This report is divided into four sections. The first two sections are concerned with applying optimization techniques to the control of the fuel vaive system for an air-breathing jet engine. In the last report, a system design which was referred to as a modified observer system was discussed. The resulting control system consisted of a series compensator which was one order less than the plant and a feedback compensator of the same order as the series compensator. The design which resulted did not include a specification of the poles of the feedback compensator. The specification of the poles of the feedback compensator is the subject of the first two sections. The pole positions must be chosen so that the feedback compensator and the series are both stable. This restriction imposes an inequality constraint on the optimization process. In addition, the poles should be chosen so that the system has a low sensitivity to changes in the parameters of the plant. This requirement is the objective function which we are attempting to minimize.

The first procedure of this report uses the Sequential Unconstrained Minimization Technique. This procedure incorporates the inequality constraints into the objective function and minimizes this function subject to the equality constraints which result from the modified observer design. These equality constraints relate the poles of the feedback compensator to the poles of the series compensator.

These relationships were discussed in the last report. The final result is a design which has a small low frequency sensitivity, realizes the desired closed-loop transfer function, and results in stable compensator transfer functions. Two such designs are presented. One is for an eighth roder transfer function, and one is for a seventh order transfer function.

The second procedure which is addressed to the fuel valve problem incorporates a different optimization procedure which is called the method of Parallel Tangents or PARTAN. This procedure constructs a vector search in a direction which is orthogonal to all the previous searches. This procedure is usually more effective than the first one gradients are difficult to evaluate. It is especially effective when the objective function is quadratic or nearly quadratic. In this procedure, a design is obtained which is different from the first but would still be a useful design for the fuel valve servo.

The last two optimization procedures are applied to the $40-60$ inlet control problem. This problem entails minimizing the response of the shock wave in the inlet to pressure disturbances from the compressor side of the inlet. The first procedure utilizes a Pattern Search to optimize the feedback compensator between the exit pressure and the bypass doors. The search procedure starts with an infial choice of parameters for the compensator and makes changes in these parameters until an improvement is obtained. If an improvement is obtained, steps are continued in the same direction until no further improvement is possible and the process is repeated until even very small steps do not
result in an improvement. This particular application was to determine the best numerator of the feedback compensator with two zeros.

The last section uses the Variable Metric optimization procedure to determine the best control system for the inlet. The Variable Metric procedure assumes that the objective function is nearly quadratic and determines the optimum in one less step than the number of parameters if the objective function is quadratic. This procedure is especially useful when the gradients of the objective function are readily available. As in the procedure above, the strategy seeks to force the total closedloop response of the system to match a desired frequency response over a range of frequencies. The objective function is the total squared error over this range of frequencies. A physically realizable control is achieved for a variety of parameter values.

SEQUENTIAL UNCONSTRAINED MINIMIZATION

Introduction

It is the object of this section to show that the fuel valve servo problem may be solved by conventional optimization techniques. Specifically, the fuel valve servo problem is shown to be equivalent to the problem of minimizing a nonlinear objective function $y(x)$ subject to both equality and inequality constraints (i.e., a nonlinear programming problem).

To help solve this problem a technique is considered (the sequential unconstrained minimization technique or SUMT) which concerns minimization in the presence of inequality constraints. In the SUMT procedure a new objective function $Y(X, r)$ is selected such that its minimization will yield a solution $X^{*}(r)$ (the ${ }^{*}$ indicates the best choice) which satisfies the inequality constraints. Then as r approaches zero, $X^{*}(0)$ becomes the value of X^{*} which minimizes the original objective function $y(x)$, while satisfying the various inequality constraints. We then may consider sthe minimization of $Y(X, r)$ subject to some additional set of equality constraints. The introduction of equality constraints means that not all N of the variables X are independent.

A technique for accomplishing minimization in the presence of equality constraints is the constrained derivative or Jacobian technique. If there are N variables and N_{s} constraints, one may obtain a set of N equations in N unknowns where the first ($\mathrm{N}-\mathrm{N}_{\mathrm{s}}$) equations are constrained derivatives (to be equal to zero when the minimum is achieved) and the
remaining N_{s} equations are the equality constraints. Combining both the SUMT method and the constrained method, we then obtain a set of N equations in N unknowns which, when solved, yields a value $X^{*(r)}$ which satisfies both the equality constraints and the inequality constraints while minimizing $Y(X, r)$. Then, as r approaches zero, $X^{*}(r)$ approaches X which minimizes $y(X)$ while satisfying all the equality and inequality constraints. In order to solve the N nonlinear equations in N unknowns, a Newton Raphson method is used and extensive use is made of digital computers.

Alternate procedures for solving the fuel valve problem fall into two categories, namely different ways of solving the optimization problem or alternate expressions (strategies) concerning the basic problem. It is felt that other optimization techniques (PARTAN, Fletcher Powell) are difficult to apply in the presence of the many equality constraints. Alsó, alternate strategies for attacking the fuel valve problem which consider the equality constraints must somehow treat the inequality constraints. The above procedure is straightforward, but, as will be shown concerning the computer program, coding for high dimension problems can be a tedious job.

In the remainder of this section, the optimization procedures are presented, the algorithm for solving the fuel valve problem is derived, the computer program is discussed, results are presented and conclusions are drawn.

Optimal Procedure

Suppose that we wish to minimize the objective function $y(x)$ subject to a set of N inequality constraints $G(x) \geq 0$ each of the form

$$
\begin{equation*}
g_{i}(x) \geq 0 \tag{1}
\end{equation*}
$$

where

$$
i=1,2, \ldots, N .
$$

This problem may be solved by considering a dual problem, namely minimizing the function

$$
\begin{equation*}
Y(X, r)=y(x)+r \sum_{i=1}^{n} \frac{1}{g_{i}(x)} \tag{2}
\end{equation*}
$$

Suppose that, for some choice of r, some $g_{i}(x)$ are positive and large, and the rest are near zero. The large positive ones will contribute little penalty to the function $Y(X, r)$ while the $g_{i}(x)$ which are near zero will contribute heavily. Consider, for a fixed r, those x that cause

$$
\begin{equation*}
\frac{\partial L(X, r)}{\partial X}=0 \tag{3}
\end{equation*}
$$

The resulting x is such that $L(X, r)$ is a minimum for each value of r; hence we can call the solution $X^{*}(r)$, that is, the best choice of X for each value of r. If one considers only X in the allowable (feasible) region $G(X) \geq 0$, and, after solving $\partial L / \partial x=0$ for some fixed r, one then takes the resulting $X^{*}(r)$ as a starting point for a new minimization
procedure with a lower value of r : one has a sequential process for minimizing a series of unconstrained objective functions $L(X, r)$ having decreasing values of r for each successive step in the process. Hence, this technique is called the sequential unconstrained minimization technique, abbreviated SUMT.

The end result is that

$$
\begin{equation*}
\operatorname{LIMIT}_{r \rightarrow 0} X *(r)=X^{*}(0) \tag{4}
\end{equation*}
$$

where $X^{*}(0)$ is the value of X which minimizes $y(X)$ subject to the constraining equations $G(x) \geq 0$.

Let us now drop the subscript r, thus assuming r to be fixed for each sequence of unconstrained minimization process and consider the more general case where the N variables X are not independent; that is, there exists a set of N_{s} equality constraints $F(x)=0$ each of the form

$$
\begin{equation*}
\mathrm{E}_{\mathrm{i}}(\mathrm{x})=0 \tag{5}
\end{equation*}
$$

where

$$
i=1,2, \ldots, N_{s} .
$$

There are now N_{s} dependent variables (let us define these as state variables s) and $N-N_{s}$ independent variables (let us define these as decision variables d). Then the state variables s depend on d. Diagrammatically, one has the situation shown below for the interdependency of the variables. Arrows indicate one variable influencing another.

In order to minimize the objective function $Y(s, d)$ is necessary that the derivative of Y with respect to the independent variables d is zero. We know that the derivative of the equation $F(x)=0$ with respect to the independent variables must be zero; hence, we have the following N equations in N unknowns using the chain rule of differentiation

$$
\begin{align*}
& \frac{d Y(d)}{d d}=0=\frac{\partial Y(d, s)}{\partial d}+\left[\left(\frac{\partial Y(d, s)}{\partial s}\right)^{T} \frac{d S(d)}{d d}\right]^{T} \tag{6}\\
& \frac{d F(d)}{d d}=0=\frac{\partial F(d, s)}{\partial d}+\left(\frac{\partial F(d, s)}{\partial s}\right)\left(\frac{d S(d)}{d d}\right) \tag{7}
\end{align*}
$$

The difficulty in solving the above lies in obtaining $S(d)$ which for nonlinear constraint equations, is a formidable task. Hence, [dS(d)]/dd can be solved for in Eq. (7) and substituted into Eq. (6) giving the following $\mathrm{N}-\mathrm{N}_{\mathrm{s}}$ equations in N unknowns

$$
\begin{equation*}
0=\frac{\partial Y(d, s)}{\partial d}-\left[\left(\frac{\partial Y(d, s)}{\partial s}\right)^{T}\left(\frac{\partial F(d, s)}{\partial s}\right)^{-1}\left[\frac{\partial F(d, s)}{\partial d}\right]^{T}\right. \tag{8}
\end{equation*}
$$

This result is called the constrained derivative of L with respect to d. If we include the N_{s} constraint equations

$$
\begin{equation*}
0=F(d, s) \tag{9}
\end{equation*}
$$

we have, in Eqs. (8) and (9), a set of N equations in N unknowns, all the elements of which are readily available from the objective function and the equality constraints.

The technique selected for solving the above system of equations is to write a Taylor series expansion for the N equations, to take only the linear terms and then to solve for $\left(\begin{array}{l}d \\ s\end{array}\right]$. The result is the NewtonRaphson iterative procedure. An initial guess $\binom{$ do }{ so } is assumed. Then a better estimate of $\binom{d}{s}$ is obtained, and the process is repeated. Once a value of $\binom{d}{s}$ results which satisfactorily solves the above set of equations for a fixed value of r [see Eq. (2)], we can call the result $\left[\begin{array}{l}d^{\prime}(r) \\ s^{*}(r)\end{array}\right]$. Then, repeating the process for even lower values of r, we note that

$$
\operatorname{LIMIT}_{r \rightarrow 0}\left[\begin{array}{l}
d^{*}(r) \\
s^{*}(r)
\end{array}\right]=\left[\begin{array}{l}
d^{*} \\
s^{*}
\end{array}\right)=X^{*}
$$

where $X *$ is the value of X which minimizes the original objective function $y(X)$ subject to the inequality constraints $G(X) \geq 0$ and the equality constraints of $F(X)=0$. The Newton-Raphson approach results in the following equation:

Note that the Newton-Raphson algorithm [Eq. (10)] requires the evaluation of the partial derivatives of $\frac{d Y}{d d}$. From Eq. (7) it is evident that the partial derivatives of the second term on the right side of the equation are rather involved; hence, perturbation techniques are used to compute them. All other partials and equations are readily available, although somewhat teduous to derive.

It is now in order to redefine the above algorithm (stated in optimization terms) and use specific equations for the fuel valve servo study. The following change of variables adequately describes the problem in a form suitable for the fuel valve servo. The decision variables and state variables become

$$
\begin{align*}
& d=P R \\
& s=C R \tag{11}
\end{align*}
$$

The dual objective function, including inequality constraints, for a fixed r is defined

$$
\begin{equation*}
Y(P R, C R)=\frac{1}{2} L^{2}(P R, C R) \tag{12}
\end{equation*}
$$

Finally, the equality constraints are defined

$$
\begin{equation*}
0=F(P R, C R)=C(C R)-\left[T_{4}\right] P(P R)-\left[T_{6}\right] \tag{13}
\end{equation*}
$$

In Eq. (13), T_{4} and T_{6} are matrices of constants, while C is a vector quantity, each element of which depends only on the vector $C R$, and P is a vector quantity, each element of which depends only on the vector PR. The above choice of Eqs. (11), (12), and (13) is made clear in a subsequent paragraph of this section in which the fuel valve servo problem is discussed. For now, it is sufficient to take the above equations and substitute them directly into Eq. (10). The result of this is

In Eq. (14)

$$
\frac{d L(P R)}{d P R}=\frac{\partial L(P R, C R)}{\partial P R}-\Delta
$$

$$
\begin{equation*}
\Delta=\left[\left(\frac{\partial L}{\partial C R}\right)^{T}\left[\frac{d C}{d C R}\right)^{-1}\left(-T_{4} \frac{d P}{d P R}\right)\right]^{T} \tag{15}
\end{equation*}
$$

Note from the above that it is necessary to obtain the partial derivatives of Δ; hence, perturbation techniques are suggested whereas all other partials are readily available although tedious to derive.

A computer program was written to facilitate the above NewtonRaphson iterative procedure.

Computer Program for the Design Procedure

The computer program has two distinct parts. The first part, a subroutine (RDR), sets up the matrices shown in Eqs. (14) and (15). These equations may be compactly written as

$$
\begin{aligned}
& X^{*}(r)=\left[\begin{array}{l}
\mathrm{PR} \\
\mathrm{CR}(r)(r)
\end{array}\right]=\left[\begin{array}{l}
\mathrm{PR}_{0} \\
C R_{0}
\end{array}\right]-
\end{aligned}
$$

$$
X^{*}(r)=\left[\begin{array}{l}
P R^{*}(r) \tag{16}\\
C R^{*}(r)
\end{array}\right]=X_{0}-\left.\left(\left.D R\right|_{X 0}\right)^{-1} R\right|_{X 0}
$$

The first part of the program, then, obtains the matrix $D R$ and the vector R given the vector X_{0}. The second part of the program (the main program NWRP) obtains $\left[\begin{array}{l}\operatorname{PR*}(r) \\ C R *(r)\end{array}\right)$ by solving for $D R^{-1} R$ using Gauss-Jordan elimination rather than inverting $D R$ directly.

Fig. 1 shows the flow diagram for subroutine $R D R$. The letters " A " through " U " are used for reference and correspond to those similarly marked portions of the program shown in the listing in Appendix A.

In "A" through " F " the program obtains $P(P R)$ and $\frac{d P}{d P R}$ when $K=1$ and $C(C R)$ and $\frac{d C}{d C R}$ when $K=2$. Dummy variables Q and $\frac{d Q}{d Q R}$ are used with $Q=P R$ for $K=1$ and $Q=C R$ for $K=2$. This facet of the program makes use of the fact that the polynomial coefficients $P(P R)$ and $C(C R)$ are of the same form. In general, this might not be the case.

In " H " through " K " the matrix $\Delta[E q$. (15)] is evaluated. In " L " through " Q " the matrix $D R$ is calculated except for $\frac{\partial \Delta}{\partial(P R, C R)}$. " L " through "Q" is used only once for each time RDR is called (that is, when the counter $n=1$).

In "R" through " T " $\frac{\partial \Delta}{\partial(P R, C R)}$ is evaluated by perturbing the variables $P R$ and $C R$. A counter n is varied from 2 to $\left(N-N_{s}+1\right)$ to perturb the $N-N_{s}$ decision variables $P R$ (using " R " and " S ") and from ($N-N_{s}+1$) to ($N+1$) to vary the N_{s} state variables $C R$ (using " R " and " T "). The numbers shown in the decision blocks refer to a case where $N=12$ and $N_{s}=N-N_{s}=6$.

Fig. 1. Elow Diagram of Subroutine RDR.

Einally, when the counter $n=N+1$, the matrix $D R$ is completed in "U" and R and $D R$ are returned to the main program. It should be noted that all equations other than the logic must be changed for each application of this program.

It is the job of the main program (NWRP) to monitor the NewtonRaphson procedure for solving the N equations in N unknowns. A flow diagram for NWRP is shown in Eig. 2. It is necessary to input to NWRP initial values of $r[E q$. (2) $], X_{0}$, and the matrices T_{4} and $T_{6}[E q$. (16)]. Then NWRP calls RDR and prints out the useful results. If the error (a measure of how well the equality constraints are met) is "small", a lower value of r is selected (until some minimum r value is reached). If the error is "large", one iterates up to 150 iterations and counts successive increases in the error. Eq. (16) is solved for ($D R^{-1}$) R by calling a subroutine INVERT in which $D R$ and R are adjoined (e.g., [DR!R]) and row and column (Gauss-Jordan) elimination is done by seeking maximum pivotal elements, thus minimizing the effects of zero pivotal elements, round off, and ill conditioning. The main program also checks the possibility that Eq. (16) might result in a negative (forbiden) value for one of the variables. An arbitrarily small positive member replaces any resulting negative value, thus adding considerable penalty to the objective function [Eq. (2)]. Einaliy, X_{o} is replaced with the newest value of $X:(r)$ and the process is repeated. In essence, the end result of one computing cycle is $X^{*}(r)$. The print statements call for, in order, the independent variables $P R$, the dependent variables $C R$, the vector R [Eqs. (14) and (16)], the functions $P(P R), C(C R)$, the values of $C(C R)$ that

Fig. 2. Elow Diagram of Main Program (NWRP).
exactly satisfy the equality constraints (e.g., $C(C R)=\left[T_{4}\right] P(P R)+T_{6}$), the error (with regard to the equality constraints), and the objective function $L(P R, C R)$ [Eq. (14)].

It will now be shown that the fuel valve servo problem may be structured as suggested in Eqs. (11) through (13) so that Eqs. (14) and (15) (and the program NWRP) may be used to obtain the design. ,

Application to the Euel Valve Servo Problem

In the fuel valve servo problem, it is necessary to design a control system utilizing series and feedback compensation (Fig. 3).

We are given the polynomials $G_{N}(S)$ and $G_{D}(S)$ for the open loop plant and the polynomials $T_{N}(S)$ and $T_{D}(S)$ for the desired closed loop transfer function. The remaining polynomials $P(S), C(S)$, and $H(S)$ must be chosen to complete the design (equality constraints). Moreover, since the system must be realizable and reasonably insensitive to disturbances, the polynomials $P(S)$ and $C(S)$ must contain only left half plane roots (inequality constraints). One immediate question is: How can we ensure that $P(S)$ and $C(S)$ contain only left half plane roots, and, if possible, can we obtain some real valued variables to use later in the optimization process? Consider the following decomposition of the third order case for the polynomial $P(S)$. Note that $C(S)$ can be treated in exactly the same manner.

$$
\begin{equation*}
P(S)=S^{3}+P_{2} S^{2}+P_{1} S+P_{0}=\left(S+P_{20}\right)\left(S^{2}+P_{11} S+P_{10}\right) \tag{17}
\end{equation*}
$$

Any order polynomial $P(S)$ or $C(S)$ may be similarly decomposed into the
product of several second order polynomials and, if the original polynomial is of an odd order, one first order polynomial. In general, a polynomial such as $P(S)$ or $C(S)$ contains pairs of real roots and/or pairs of complex conjugate roots as well as one additional real root if the polynomial is of odd order. The conclusion to be reached is that coefficients such as P_{20}, P_{11}, and P_{10} are real valued, and if positive, the polynomial $P(S)$ with coefficients P_{2}, P_{1}, and P_{0} must have all left half S plane roots. Additionally, if P_{20}, P_{11}, and P_{10} are known, the actual poles are easily found if desired. The following definitions are made:

$$
\begin{aligned}
& \mathrm{P}=\text { Coefficients of } \mathrm{P}(\mathrm{~S}) \quad\left(\text { i.e., } P_{2}, P_{1}, P_{0}\right) \\
& \mathrm{PR}=\text { Coefficients such as } \mathrm{P}_{20}, \mathrm{P}_{11}, \mathrm{P}_{10} \\
& \mathrm{C}=\text { Coefficients of } \mathrm{C}(\mathrm{~S}) \text { (i.e., } \mathrm{C}_{2}, C_{1}, C_{0} \text {) } \\
& C R=\text { Coefficients such as } C_{20}, C_{11}, C_{10} \\
& H=\text { Coefficients of } H(S)
\end{aligned}
$$

The letter " R " in $P R$ and $C R$ shows that these coefficients are indicaters concerning the roots of $P(S)$ and $C(S)$ (i.e., if the $P R$ and $C R$ are positive, all the roots of $P(S)$ and $C(S)$ have negative real parts). The variables X to be used in the optimization process may now be chosen to be the vector $\binom{P R}{C R}$. Then the transfer functions $\frac{P}{C}$ and $\frac{H}{P}$ are stable if C, P, and H are of the same order and if $\binom{P R}{C R} \geq 0$. Thus, inequality constraints of the form $G(S) \geq 0$ are defined by

$$
\begin{equation*}
\binom{P R}{C R} \geq 0 \tag{18}
\end{equation*}
$$

From Eig. 3 , it is evident that if $G_{N}(S)=T_{N}(S)$, then

$\frac{Y}{R}=\frac{T_{N}(S)}{T_{D}(S)}=\frac{P(S) * G_{N}(S)}{C(S)^{*} G_{D}(S)+G_{N}(S)^{*} H(S)}$

Fig. 3. Closed Loop Control System.

$$
\begin{equation*}
G_{D}(S) C(S)+G_{N}(S) H(S)=P(S) T_{D}(S) \tag{19}
\end{equation*}
$$

The coefficients of $C(S)$ and $H(S)$ may then be related linearly to the coefficients of $P(S)$ to realize the desired transfer function, thus providing equality constraints. If the coefficients of the highest powers of $C(S)$ and $P(S)$ are both one, then the following equality constraints result. The coefficients C depend only on the variables $C R$, and the coefficients P depend only on the variables PR.

$$
\left[\begin{array}{c}
C(C R) \tag{20}\\
H
\end{array}\right]=\left[T_{1}\right] P(P R)+T_{2}
$$

Partioning the above we obtain

$$
\begin{gather*}
0=C(C R)-\left[T_{4}\right] P(P R)-T_{6} \tag{21}\\
0=H-\left[T_{3}\right] P(P R)-T_{5} \tag{22}
\end{gather*}
$$

Since the roots of H are not of particular concern, Eq. (21) is the equality constraint equation linearly relating the coefficients C and P but non-linearly relating the variables $C R$ and $P R$. The above conditions require the following relations between the orders of the polynomials involved.

Polynomial	Order	Undetermined (Free) Coefficients
$T_{D}(S)$	i	0
$C(S), C R(S)$	$i-1$	$i-1$
$P(S), \operatorname{PR}(S)$	$i-1$	$i-1$
$H(S)$	$i-1$	i

Consequently, for an ith order realization problem, there are $N=2(i-1)$ variables ($P R$ and $C R$) with $N-N_{s}=i-1$ independent (decision) variables and $N_{s}=i-1$ dependent (state) variables. The variables $P R$ may be considered (arbitrarily) independent while the variables $C R$ may be considered dependent.

Let us now choose an objective function $y(x)$ to be the low frequency sensitivity S_{T}^{K} of the closed loop transfer function,

$$
T=\frac{T_{N}(S)}{T_{D}(S)},
$$

to changes in the forward loop gain (K). Since $G_{D}(S)$, for the cases we shall consider, has a free S, let us define the low frequency sensitivity as

$$
\begin{equation*}
y(X)=S_{T}^{K}(P R, C R)=\operatorname{LiMIT}_{S \rightarrow 0}\left[\frac{1}{S} \frac{T_{N}(S) C(S)}{T_{D}(S)} \overline{P(S)} \frac{G_{D}(S)}{G_{N}(S)}\right] \tag{24}
\end{equation*}
$$

The fuel valve servo problem for $T_{D}(S)$ of order i may now be formulated into an optimization problem. We wish to optimize the objective function S_{T}^{K} ($P R, C R$) with $P R$ the independent variables and $C R$ the dependent variables. The inequality constraints (for stability) can be treated by minimizing a dual objective function, for a fixed number where $r>0$.

$$
\begin{equation*}
Y(P R, C R)=\frac{1 / 2}{2}\left[S_{T}^{K}(P R, C R)+r \sum_{j=1}^{i-1}\left(\frac{1}{P R_{i}}+\frac{1}{C R_{i}}\right]\right]^{2}=\frac{12}{2}[L(P R, C R)]^{2} \tag{25}
\end{equation*}
$$

There are also i-l equality constraints.

$$
\begin{equation*}
0=C(C R)-\left[T_{4}\right] P(P R)-T_{6} \tag{26}
\end{equation*}
$$

Eqs. (25) and (26) are of the form suggested in Eqs. (12) and (13); hence, Eq. (14) provides an algorithm for finding the variables $\left[\begin{array}{l}\mathrm{PR*}(r) \\ C R^{*}(r)\end{array}\right]$ and the NWPR program can be used to carry out the algorithm. Once acceptable values of $P R$ and $C R$ are obtained, the polynomials $P(S)$ and $C(S)$ are determined. From Eq. (22), the coefficients of $H(S)$ are obtained and the design is complete.

Two designs were obtained. Fig. 4 shows the final results for $T_{D}(S)$ of order $i=8$; hence, there were $2(i-1)=14$ variables (7 independent and 7 dependent). Satisfactory results occurred after 119 iterations (43 seconds of central processor time). Fig. 5 shows the final results for $T_{D}(S)$ of order $i=7$; hence, there were 12 variables (6 independent and 6 dependent). Satisfactory results occurred after 33 iterations (10 seconds of central processor time). In both cases, satisfactory results meant that the constraint Eq. (21) was satisfied to a high degree of accuracy. Then the final value of $P(S)$ was taken, and Eq. (20) was used to specify the final values for $C(S)$ and $H(S)$, thus satisfying the constraint equations exactly with all the roots of $P(S)$ and $C(S)$ in the left half plane.

The above results represent a stable realization in which all roots of $P(S)$ and $C(S)$ are well damped (>0.7). In view of the many constraint equations and variables involved, the cost of the computing time must be considered minimal compared to the cost of man hours required by
$\frac{T_{N}(S)}{T_{D}(S)}=\frac{3.056 \times 10^{30}}{S^{8}+2.498 \times 10^{7} S^{7}+6.231 \times 10^{8} S^{6}+8.194 \times 10^{12} S^{5}+6.724 \times 10^{16} S^{4}+3.721 \times 10^{20} S^{3}+1.311 \times 10^{24} S^{2}+2.486 \times 10^{27} S+3.056 \times 10^{30}}$

$\frac{G_{N}(S)}{G_{D}(S)}$
$P(S)=S^{6}+4.569 \times 10^{4} S^{5}+6.898 \times 10^{8} S^{4}+3.438 \times 10^{12} S^{3}+6.204 \times 10^{8} S^{2}+2.216 \times 10^{4} S+1.920 \times 10^{-2}$
$c(s)=s^{6}+3.660 \times 10^{4} s^{5}+4.787 \times 10^{8} s^{4}+3.001 \times 10^{12} s^{3}+1.053 \times 10^{16} s^{2}+3.314 \times 10^{18} s+3.425 \times 10^{19}$
$H(S)=2.625 \mathrm{~S}^{6}+3.229 \times 10^{4} \mathrm{~S}^{5}-3.626 \times 10^{8} \mathrm{~S}^{4}+7.505 \times 10^{11} \mathrm{~S}^{3}-1.442 \times 10^{15} \mathrm{~S}^{2}-3.816 \times 10^{18} \mathrm{~S}+1.920 \times 10^{-2}$

Roots of $H(S)$
$1839+j 4395$
$1839-j 4395$
16414
-2439
-3071
-20176

Fig. 5. Design for a 7th Order Closed Loop Transfer Function.
a trial-and-error approach to the same problem. The information needed by the computer to design the system includes the constraint equation matrices in Eqs. (20) to (22), initial guesses at all the variables $\left(P R_{j}=C R_{j}=1000\right.$ was used for $\left.j=1,2, \ldots, i-1\right)$, initial value for r in Eq. (25) ($r=5$ was used), and explicit values for all the partial derivatives appearing in Eq. (14) (except for partials of Δ in Eq. (15), which partials are obtained by perturbing the variables $P R$ and $C R$).

Two alternate approaches were tried for the fuel yalve servo problem. Both approaches were aimed at simplifying the calculation of the matrix $D R[E q s .(14)$ and (16)]. In the first, using a FletcherPowell technique, $D R^{-1}$ was estimated where in the second, an original approach to the problem, a somewhat different treatment was attempted.

The crux of the Fletcher-Powell approach is that the vector R [Eqs. (14) and (16)] is the gradient vector for some objective function $Z(X)$. However, in this case, the vector R consists of constrained derivatives and equality constraints. It is felt that the fact that R is not a gradient vector explains the inability of the technique to converge to an answer. Briefiy, if R were a gradient vector for some $Z(X)$, then the following algorithm estimates $D R^{-1}$ and minimizes $Z(X)$ with quadratic convergence. Let $H_{0}=$ initial guess of $\left(\left.D R\right|_{X O}\right)^{-1}$.

$$
S=-\left.H_{0} R\right|_{X_{0}}
$$

$\operatorname{LET} X=X_{0}+\alpha S \quad(\alpha$ is a scalar)

$$
\text { OBTAIN } \alpha * \text { so THAT } \frac{\operatorname{dZ}[x(\alpha)]}{d \alpha}=0
$$

THEN $X^{*}=X_{0}+\alpha^{*} S$

$$
\begin{aligned}
& \operatorname{LET} Y=\left.R\right|_{X^{*}}-\left.R\right|_{X O} \\
& \left(\left.D R\right|_{X^{*}}\right)=H_{0}+\frac{\alpha S S^{T}}{S^{T} Y}-\frac{H_{0} Y Y^{T} H_{O}}{Y^{T} H_{O} Y} \\
& H_{0}=\left(\left.D R\right|_{X *}\right)^{-1} \\
& X_{0}=X^{*}
\end{aligned}
$$

REPEAT PROCESS

The major difficulty in applying the Fletcher-Powell approach lies in the one-dimensional gradient search for a*. An attempt was made at finding α^{*} so that

$$
\begin{equation*}
\left(\frac{\partial Z(X, \alpha)}{\partial X}\right)^{T} \frac{d X}{d \alpha}=0=\left(\left.R\right|_{X O+\alpha S}\right)^{T} S \equiv G(\alpha) \tag{28}
\end{equation*}
$$

A Newton-Raphson technique was used to find α^{*} such that $G\left(\alpha^{*}\right) \simeq 0$. This procedure never did converge to a satisfactory result (satisfying the equality constraints). Additionally, the computing time taken by the onedimensional search for α^{*} caused each iteration of Fletcher-Powell to take as much time as each iteration of the Newton-Raphson technique in which $\left(\left.\mathrm{DR}\right|_{X_{0}}\right)^{-1}$ is found directly.

The second alternate procedure is aimed at satisfying the equality and inequality constraints only. A vector R [as in Eq. (16)] is so chosen
that, if every element is near zero, then all constraints are satisfied, and the design is completed. Also, the matrix $D R$ is simple to compute. As in the Fletcher-Powell case (above) the vector R is neither the gradient of an objective function nor a vector of constrained derivatives and equality constraints; hence, convergence is not guaranteed. The vector R is chosen as follows, where the upper half is chosen to satisfy the equality constraints and the bottom half is to satisfy the inequality constraints:

$$
R=\left[\begin{array}{cccc}
C(C R)-\left[T_{4}\right] P(P R)-T_{6} \tag{29}\\
\frac{1}{P R_{1}}+\frac{1}{C R_{1}} & & \\
& \ddots & \\
& & \frac{1}{P R_{i-1}}+\frac{1}{C R_{i-1}}
\end{array}\right]
$$

Then the matrix $D R$ is

With the above definitions of R and $D R, E q$. (16) can be used to iteratively obtain the solution $\binom{P R^{*}}{C R^{*}}$. The above procedure took $1 / 3$ of the computing time per iteration required by the SUMT--constrained derivative --Newton-Raphson procedure, had far better convergence than did the Fletcher-Powell prodedure, but had more erratic behavior than the SUMT--
constrained derivative--Newton-Raphson procedure. It is felt that Eqs. (29) and (30) hold some promise as a method of solving the equality and inequality constraint, but that the SUMT--constrained derivative--NewtonRaphson technique is far superior.

Summary and Conclusions

The fuel valve servo problem requires the design of a control system utilizing series and feedback compensation (Fig. 3). Given are the polynomials $G_{N}(S)$ and $G_{D}(S)$ for the open loop plant and $T_{N}(S)$ and $T_{D}(S)$ for the closed loop plant. The remaining polynomials $P(S), C(S)$, and $H(S)$ must be chosen to complete the design (equality constraints). Moreover, since the system must be realizable and reasonably insensitive to disturbances, the polynomials $P(S)$ and $C(S)$ must contain only left half plane roots (inequality constraints). The polynomials $P(S)$ and $C(S)$ are factored into first and second order polynomials, and the resulting coefficients become the variables. In general, if $G_{N}(S)$ and $T_{N}(S)$ are constants and if $T_{D}(S)$ and $G_{D}(S)$ are ith order, $P(S)$ and $C(S)$ are (i-1) th order and there are 2 (i-1) variables, half of which are independent and half of which are dependent. The design problem is restructured into an optimization problem. The objective function is low frequency sensitivity [Eq. (24)]. A Sequential Unconstrained Minimization Technique (SUMT) is used to treat the inequality constraints [Eqs. (2) and (25)]. The constraint equation [Eq. (21)] is treated using the constrained derivative approach [Eqs. (6) to (9)]. The resulting Newton-Raphson algorithm $[E q$. (14)] was used to obtain the designs shown in Figs. 4 and 5.

The cost of computing time must be considered minimal as compared to the cost of man hours required to solve the above multi-variable problem by trial-and error. The only difficulty in setting up the program lies in obtianing the required partial derivatives [Eq. (14)] which is somewhat tedious.

Alternate procedures (Fletcher-Powell and a different choice of the vector R) were attempted, but the SUMT--constrained derivative--Newton-Raphson technique was far superior, and the resulting design exhibited excellent damping characteristics for the roots of $P(S)$ and $c(S)$.

STEFAN.T144.CM60000.ON 39 COO4 3X.
RUN(S)
LGO.

```
            PFOGRAM NWRP(INPUT,OUTDUT)
            OIMENSION X(12).R(12),Y(12).XI(12).LOC(12).A(12,131.CK(12).
            102(12.12).T4(6.6).TG(E),C(6).P(5).CH(G)
            2.D(12.12),YF(12)
    C INPUT MATPICES T4 NND TGO
            AF.AD 51.((T4(I.J).J二1.6).I=1.E),TG
            51 FORMAT(6(6E10.3/).GE10.3)
            PRINT 52,T4.TE
            52 FORMAT (6(1X.6E12.31).1X.6E12.3)
    C MULTIPLIER R IS CALLED S IN THIS DROGRAM. SET INITIAL VALUE
            S=5.
            FACTOR=2
    C O AND N IS THE NUMBER OF VARIABLES M =N+1
            O=12
            N=12
            M=13
    C ZERO OUT STORAGE
            DO 18 I=1,N
            Y(I)=0.
            18R(I)=0.
            00 19 I=1.N
            00 19 J=1.N
            19 DR(I.J)=0.
    C INIIIAL GUESS AI PR ANO CR
            00 50 I=1,N
            50 X(I)=10000.
            28 CONTINUE
            ITER=0
            PRINT 20
            20 FOEMAT(1H1)
            NCOUNT=O
            ENM1=1000.
    C CALCULATE VECTOR R AND MATRIX OF PARTIALSIOR
            10 CALL ROR(X,O,R.DR,S.FCN,T4,T G,P,C)
    C CALCULATE ERROR IN EQUALITY CONSTRAINTS
            EPROR=0.
            NP =N/2
            00 1 I=1.NP
        1.ERROR=ERROR+R(I+NP)/ESI)
    C CALCULATE VALUE OF CICR! THAT EXACTLY SATISFIES EQUALITY CONSTRAINTS--CHIT
            DO 53.I=1.NP
            CH(I)=TG(I)
            DO 53 L=1,NP
        53.CH(I)=CH(I)+T4(I L)*P(L)
    CIIERIS NO OEITERATIONS. NCOUNT IS NO GF COSECUTIVE ERROR INCREASES
        8 PRINT 2. ITER.NCOUNT. (XII).I=1.N).
        2(R(I),I=I:N),P,C,CH,ERROR.FCN
            2FORMATUH-2IH NUMBER OF ITERATIONS.I5.
                127H SUCCESSIVE ERROR INCREASES,IS/
                24H PR .7X.GE14.5/4H CR .7X.6E14.5/11H R(1)-R(5).
                36E14.5/1IH R(7)-P(12). EE 14.5/3H P..8X.EE.14.5/
            43H C . 8X.6E14.5/11H CORRECT C .EE14.5/EH ERROR.5X.
            52E14.5.18H VALUE OF L(PR,CR)//
    C IF ERPOR IS'SMALL: LOWERS
            IF (ABS (ERROR)-1.E-6) 3.3.4
    C HAVE 150 ITERATION BEEN RUN
```

```
        4 IF(ITER-150) 5.3.3
        j CONTINUE
C coufat successive Erpor increases
        IF(ATS(GRROR)-ABS(ENM1) 13, 15:\5
    13 NCOUNT=O
        ENMZ=FNM1
        LNMl =ERROR
        GO TO 14
    15 NCCUNT =NCOUNT+1
        ENM2=ENM1
        EAM1 =ERROR
    14 CONTINUE
    C GET SOLUTION OF (DR-1:*R USING EAUSS JORDAN ELIMINATION
        CALL INUERT (A,Y,LOC,CK,R,DR ON.M)
        ITER=ITER+1
    c calculate new values for variaeles
        DO 9 I=1,N
        O X(I) =X(I)-Y(I)
    C LET NO variable be less Than - CO1
        DO 31 I=I,N
        IF(X(I)) 32,31.31
    32 x(I) =.001
    31 CONTINUE
        GO TO 10
    C REDUCE S
        3 S=S/FACTOR
    C TERMINATE FOR S LESS THAN 3
        If (5-3) 27.27,29
        29 CONTINUE
    c Iterate again with lower value of }
        GO TO 28
    27 STOP
        END
```


 31E).PS(6).CS15; X (i2)
$k=1$
$\therefore=1$
$\because=1$
C NP IS THE ORDER OF PR (AND CR) NPZ IS TOTAL NO. OF VGRIABLSS iv $=0 / 2$
$\mathrm{N} 2=0$
C values of pe and er
DO $46 \mathrm{I}=1$. NP
$\operatorname{PR}(I)=X(I)$
$45 . C P(I)=X(I+N P)$

1. $04 n=0$.
$031=P R(1)$
$A \quad 030=P R(2)$
$021=\operatorname{RP}(3)$
$020=D R(4)$
$011=P 2(5)$
Q10=PR(5)
C CALCULATE P(PR) AND OP/JPP WHEN K $=1$
C CALCULATE C(CR) ANE DCIDCR WHENK $=$?
C OIS USED TO CALCULATE P(PR) NNO CPCRI
C OGIS USES TO CALEULATE OPIFO LUT OCIOCR
$2 \therefore 5=045+321+G ? 1+011$
$05=031 * 040+030+021 * 040+021 * 331+020+011 * 040+011 * 031+011 * 621+010$ $64=030 * 040+021 * 031 * 040+021 * 63 \mathrm{C}+020 * 04 \mathrm{C}+620 * 31+011 * 031 * 64 \mathrm{C}$
$1+011 * 020+011 * 021 * Q 40+011 * 021 * 3 \leq 1+011 * * 20+010 * 340+015 * 331+010 * 021$
$Q 3=021 * G 30 * G 40+G 20 * G 31 * 04 J+02 C * 030+012 * 030 * 040+011 * 021 * 031 * 04 C$
$1+011 * \operatorname{G1*} 030+611 * 020 * 040+011 * Q 2 C * Q 31+010 * 031 * 040+010 * 030$
$2+010 * 021 * 031+010 * 021 * 040+010 * 020$
$02=020 * Q 30 * G 4 C+011 * 021 * 030 * 040+011 * 020 * G 31 * 04 C+G 11 * G 2 C * 03 C$
$1+010 * 030 * 040+010 * 021 * 031 * 040+010 * 021 * 030+010 * 020 * 031+010 * 020 * 340$ Q1 $=011 * 020 * Q 30 * Q 40+Q 10 * Q 21 * 030 * Q 40+010 * 020 * 231 * 040+Q 10 * 020 * 030$
UO (1.2) $=1$.
$00(1.3)=0$.
$00(1.4)=1$.
$D Q(1.5)=0$.
$00(2.6)=1$.
$00(1.7)=0$.
D0 (2.2) $=0.45+021+011$
DO $(2,3)=1$.
$O Q(2.4)=040+03 i+011$
$D Q(2 \cdot 5)=1$
$00(2.6)=640+031+021$
OQ $(2.7)=1$.
$00(3.2)=021 * 040+020+011 * 040+011 * 221+010$
$D Q(3.3)=040+021+011$
$0 Q(3,4)=031 * 640+030+011 * 040+011 * 031+010$
$00(3,5)=640+031+011$
$00(3,6)=231 * 640+030+021 * 040+021 * 031+620$
$D Q(3.7)=640+03 i+02 i$
$00(4.2)=020 * 040+011 * 021 * 240+011 * 020+310 * 040+010 * 021$.
$00(4 \cdot 3)=021 * 04 \tilde{\omega}+020+011 * 040+011 * 021+02 C$
$00(4.4)=030 * 040+021 * 03 i * Q 40+0 i j * 630+0 i E * 331+010 * 040$
$00(4,5)=031 * 040+030+011 * 040+011 * 031+010$
$00(4.6)=030 * 640+021 * 031 * 640+021 * 030+020 * 040+020 * 031$
$D Q(4,7)=Q 31 * 040+030+Q 21 * 031+021 * Q 4 O+020$

IF (M-1) 5.5.6
(C CALCULATE -T4*(EP/DPR) CALLED THDPM(I)
50019 I=I,NP
$J \quad \begin{aligned} & 0019 \mathrm{~J}=1, N P \\ & 74 D P M(I, J)=0 .\end{aligned}$
DO $19 \mathrm{~L}=1$, NP
19 T4DPM(I*J) =T4DPM(I.J)-T4(I.L)*DP(L.J)
6 CONTINUE
C CALCULATE MATRIX LELTA
DO $7 I=1$ NP
$\operatorname{TEMP}(I)=0$.
K - 007 LILDPN
7 TEMP (I) $=$ TEMP (I) + CLS(L) *OCI(L.I)
$0020 I=1$, NP
DELTA $(I)=$ C.
DO $20 L=I, N$?
20 OELTA(I) =TEMP(L) *T4 OPM(L,I) +JELTA(I)
IF $(N-1) 9 \cdot 9 \cdot 3$.
C CALCULATE MATRIX OR EXCEPT FOR PARTIALS OF DELTA
9 DO $30 \mathrm{I}=1$.NP
30 DELTDII) $10 E T$ TA (E)
C CALCULATE DL/EPR CALLEO ELD(I)
CON $=-11.905 / 3.256) *(C(6) / P(5)) * .0001$
OLD(1) $=-51(P 31 * * 2)$
M OLD(2) =CON/P30-5/(P30**2)
CLD(3) $=-5 /(P 21 * * 2)$
DLO(4) $=\mathrm{CON} / \mathrm{P} 20-5 /(P 2 \mathrm{O} * * 2)$
OLD(5) $=-5 /(P 11 * * 2)$
$D L D(E)=C O N / P 10-5 /(P 1 \cap * * 2)$
C CALCULATE PARTIALS OF DL/DPR CALLEO DOLOIT.J)
$0037 \mathrm{I}=1$, NP
DO $37 \mathrm{~J}=1, \mathrm{ND} 2$
37 DULD (I.J)=0.
ODLD (2.2) $=-2.1(P 30 * * 2)$
DOLD (2.4) $=-1 . /(P 20 * P 30)$
DDLD $(2.6)=-1.1(P 10 * P 39)$
$\operatorname{COLD}(2.8)=1 .((P 30 * C 30)$
$\operatorname{DOLD}(2.1 \cap)=1 . /(P 30 * C ? 0)$
ODLO (2.12) $=1 \cdot 1(P 30 * C 10)$
OCLO $(4,2)=$ DOLD (2.4)
OOLO $(4 * 4)=-2.1(P 2 C * * 2)$
OOLD (4.6)=-1.1 (P 20*P 10)
$\operatorname{DOLD}(4.8)=1.1(\mathrm{P} 2 \mathrm{O} * \mathrm{C} 30)$
COLO (4.1.1) $=1.1(P 20 * C 20)$
DOLO (4. 12$)=1.1(P 20 * C 10)$
DOLD $(6.2)=00 L D(2,6)$


```
            IF (N-2-NO) 2A.2*.27
C USE THEFMFOR NOMIMAL(USOERTURSED) VALUFS OT PO
    22 O0 35 i=i.N?
    0 35 J=1.NF
    35 T4CPM(I.N)=T4CP5(I.J)
C OESET LAST PQ ANO P(PR)
            P1O=PR (NP)
T CO 4? I=INN
    42F(I)=OS(I)
            00 TO 23
    C RESET CRON-2-NP) ANO PEFTUPZ CR(N-I-NP)
        27CR(N-2-NP)=CR(N-2-NP)/1.00)
        29CR(N-1-NP)=CR(N-1-NP)*1.NO1
            EPS=.001*CR(N-1-NP)/1.001
            n=2
            50 10 15
        1100 35 I=1,NP
            GO 36 J=I.NP2
        36 OR(I.J)=DR(I*J)-DDELT(I.J)*FCN
    C RESET LAST CP AND C(CR) CGNPLETE DR SY INCLUDING PARTIALS OF DELTA
        CR(N-1-NP)=CR(N-I-ND//1.ODI
    | C1O=CR(NP)
    00 47 I=1.NP
        47C(I)=CS(I)
            M M = 1
            k=1
        N二I
            RETURN
            ENO
        1.000E+00
    -9.093E+03 1.000E+0C
        4
    2.344E+08-9.093E+03 i.000E+50
    -3.504E+12 2.044E+08.-9.093E+03 1.000E+00&
    6.040E+16-3.504E+12 2.044E+08-9.0.73E+03 E.000E+00
    -1.065E+21 6.0090E+16-3.504E+12 2.044E+08-9.093E+03 1.0 ODE+00
    -9.093E+03 2.044E+[88-3.504E+12+6.090E+16-1.055E+21 1.070E+25
```


PARALLEL TANGENTS

Introduction

The method of Parallel Tangents (or Partan) as developed by Shah, Buehler and Kepthorne [1] is ideally suited to cost functions of the form

$$
\begin{gathered}
\omega=Q(\bar{z}) \\
\text { Cost }=y=M(\omega)=Y(\bar{z})
\end{gathered}
$$

,
where

$$
\bar{z}=\left(z_{1}, z_{2}, z_{3}, \ldots, z_{N}\right)
$$

and Q and M are quadratic and monotonic cost functions respectively. The individual parameters (Z_{i}) are unconstrained.

In this report, a particular form of Partan known as Continued Gradient Partan is discussed. The algorithm for solving the class of cost functions defined above is given along with general comments regarding Partan's efficiency. This is followed by a description of the Partan computer program including modifications needed for problems having constrained parameters. After a section giving I/O formats and program flow charts, the application of Partan to the Lewis Fuel Valve problem is described.

Optimization Procedure

The Partan algorithm serves as a master program for the parameter search, initiating the search at any given starting point, and then guiding the search until termination. The Partan procedure consists of several parts:

1. The Partan algorithm
2. The gradient calculation
3. The vector search (Golden Section)
4. The cost calculation
5. The constraint calculation (if any)

The Partan Algorithm
Let the set of parameters at any step (j) of the search be denoted by

$$
\bar{z}_{j}=\left[z_{1}(j), z_{2}(j), \ldots, z_{N}(j)\right]
$$

Then \bar{Z}_{0} corresponds to the given starting point. According to the Partan algorithm (illustrated graphically in Fig. 1), the cost function gradient (∇y) is evaluated at \bar{Z}_{0} (and subsequently at $\bar{Z}_{2}, \bar{Z}_{4}, \ldots, \bar{Z}_{\text {even }}$) and the optimum along that gradient vector is found at \bar{z}_{2} (and subsequently $\bar{Z}_{3}, \overline{\bar{Z}}_{5}$, . . , $\bar{z}_{\text {odd }}$). This step is called a gradient step. When the search routine reaches \bar{Z}_{3} (and later \bar{Z}_{5}, \bar{Z}_{7}, . . . , $\bar{Z}_{\text {odd }}$), the optimum \bar{Z}_{4} is then found along the vector $\left(\bar{Z}_{3}-\bar{Z}_{0}\right)$ or in general ($\bar{Z}_{\text {odd }}-\bar{Z}_{\text {odd }-3}$). This is known as an acceleration step.

If the individual vector optimum points \bar{z}_{j} are exactiy determined along precisely computed vectors, the optimum set of parameters having a quasi-quadratic cost will be found in $2 \mathrm{~N}-1$ steps. No other procedure has been shown to guarantee such convergence.

If the cost function is not quasi-quadratic, it is of ten not desirable to exactly determine the vectors and their resulting optimum points (see Harkins [3]). This inexactness introduces some amount of randomness into the search which is beneficial for problems having cost functions with highly complex contours in the parameter space.

Gradient Calculation

The gradient procedure estimates y by making perturbations about each $\bar{z}_{\text {even }}$ and measuring the change in cost. This method is not only desirable for non-quasi-quadratic problems but is often necessary when Vy_{y} is too complex to determine analytically. The method does, however, require extra cost function evaluations and is therefore suitable only to problems where the cost may be quickly computed.

In the gradient procedure, each

$$
\begin{gathered}
\Delta y_{i}=Y\left(Z_{1}, \ldots, z_{i}+\alpha R_{i}, \ldots, Z_{N}\right)-Y(\bar{Z}) \\
i=1,2, \ldots, N
\end{gathered}
$$

is evaluated where R_{i} is the range estimation of Z_{i} and α, a constant (usually 10^{-4}). Then the norm

$$
|\Delta y|=\left[\sum_{i=1}^{N} \Delta y_{i}^{2}\right]^{\frac{1}{2}}
$$

is found and the incremental change $\left(D_{i}\right)$ for each z_{i} is computed,

$$
D_{i}=\beta R_{i}\left(\Delta y_{i} / \Delta y\right)
$$

where β is the "step size" constant supplied by the calling program.

Vector Search

The particular vector search used is the golden-section search (see Wilde and Beightler [2]). Using the D_{i} 's supplied by the gradient subprogram in the case of a gradient search or using D_{i} 's given by

$$
D_{i}=\left(Z_{i}-Z_{i-3}\right) / 3
$$

for an acceleration search, the Z_{i} 's are stepped along the vector (according to the size of B) and the cost (y) is computed at each point. The search proceeds by either expanding or contracting step sizes until the optimal point along the vector is reached.

As an optimal vector point (or eventually the optimum) is approached, β decreases. During each vector search, B is allowed to decrease only a fixed number of times (3 if the cost function is "ridgy" or 5 if it's "smooth") while there is no restriction on the number of increases. However, if during a vector search, β decreases below a level E selected by the program user, the Partan search is terminated.

The cost subprogram must be supplied by the user. The calling program provides the current value of $Z_{1}, Z_{2}, \ldots, Z_{N}$ and the subprogram should return the corresponding cost. If there are constraints on the $Z_{i} ' s$, they can often be entered by augmenting the cost function.

Another method, which is used in this report, is to set a flag when any constraint is violated. The flag prevents acceptance of the nonfeasible parameter and in the next gradient calculation, augments the violating parameter's gradient.

$$
D_{j}=\beta R_{j}\left[\frac{\Delta y_{j}}{|\Delta y|}+\sum_{k} \frac{\Delta F_{k}}{|\Delta F|}\right]
$$

where $\Delta F_{k} /|\Delta F|$ is the normalized gradient of any violated constraint function with respect to Z_{j}. This method was proposed by Klingman and Himmelblau [4].

Now that the Partan technique has been described, some of its programning advantages are apparent. The program is relatively short, requiring less than one hundred instructions. The core storage requirements are minimal since only the two previous tries are retained.

Although the inexact determination of y and each \bar{z}_{j} degrades the convergence for quasi-quadratic cost functions (ideally $2 \mathrm{~N}-1$ steps), Harkin has demonstrated that the number of steps required is still proportional to the dimension N of \bar{Z}. Thus, Partan is superior to normal steepest ascent techniques.

A common non-quasi-quadratic cost function used to measure convergence performance is Rosenbrock's function

$$
y=100\left(z_{2}-z_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2}
$$

with $\bar{z}_{0}=(-1.2,1)$ and $y_{o p t}=0$. Partan will converge to $y \leq 10^{-5}$ in less than 180 cost function evaluations (less than 30 steps). This is
superior to the normal steepest ascent method (does not converge), sectioning method (no convergence), Spider method (>400 cost function evaluations) and Simplicial method (>1200 evaluations).

The Program

The input data is read into the program via the master Partan program. The first card contains search parameter information and the following N cards contain the starting value and range of each Z_{i}.

CARD 1	Col 1-10	(termination criteria)	in El
	Col 11-20-A	(alpha-perturbation)	in E10.0
	Col 21-30-N	(number of $\mathrm{Zin}^{\prime} \mathrm{s}$)	in 110
	Col 31-40-L	(no. of constraint eqs.)	in 110
CARD 2	Col 1-10- Z_{1}	(initial value)	in E10.0
	Col 11-20- R_{1}	(range)	in El0.0
CARD 3	Col 1-10- Z_{2}	(initial value)	in E10.0
	Col 11-20- R_{2}	(range)	in E10.0

CARD N

The flow charts appear on the following three pages.
The program output lists the number (N) of parameters being optimized, the perturbation constant (α) and the termination criteria (E). Following this is a listing of the search and its result. At each point ($\overline{\mathrm{Z}}_{0}, \overline{\bar{z}}_{2}, \overline{\mathrm{z}}_{3}, \ldots, \overline{\mathrm{z}}_{\mathrm{p}}$) the current step number (P) is given along with the total number of cost function evaluations. The values of each Z_{i} at that point are then listed, followed by the value of the cost function (y) there. An optional printout, that shows how progress was made during the optimization is a listing of the step size parameter (B).

Application to Fuel Valve Problem

The plant $G(s)$ is shown below:

where

$$
G_{1}(s)=\frac{\frac{1}{93} s^{2}(s+1256) \frac{i n}{i n-1 b-s e c}}{\left[(s+1970)^{2}+4030\right]\left[(s+488)^{2}+1190^{2}\right]}
$$

and

$$
G_{2}(s)=\frac{11.995 \times 10^{11} \mathrm{~s} \frac{1}{\mathrm{sec}}}{(\mathrm{~s}+3342)^{2}+17820^{2}}
$$

The desired response with 500 Htz bandwidth and 0.707 damping
ratio is

$$
\begin{aligned}
& \frac{C(s)}{R(s)}=1 /\left(\frac{s^{2}}{329 \times 10^{6}}+\frac{67 \times 10^{3} s}{329 \times 10^{6}}+1\right)\left(\frac{s}{6 \times 10^{3}}+1\right)\left(\frac{s}{3.5 \times 10^{3}}+1\right) . \\
& \cdot\left(\frac{s^{2}}{36 \times 10^{6}}+\frac{4.8 \times 10^{3} s}{36 \times 10^{6}}+1\right)\left(\frac{s^{2}}{12.3 \times 10^{6}}+\frac{4 \times 10^{3}}{12.3 \times 10^{6}}+1\right)
\end{aligned}
$$

to be obtained using the following configuration (Fig. 2).

$$
C(s)=G(s) E^{\prime}(s)
$$

Fig. 2. Euel Valve Block Diagram.

$$
E^{\prime}(s)=\frac{P(s)}{B(s)} E(s)
$$

and

$$
E(s)=R(s)-\frac{H(s)}{P(s)} C(s)
$$

For a given $G(s)$ and $C(s) / R(s), H(s)$ and $B(s)$ are related to $P(s)$ by the transformations

$$
H(s)=T_{H}[P(s)]
$$

and

$$
B(s)=T_{B}[P(s)]
$$

The computer program is modified to pick $P(s)$ such that both $B(s)$ and $P(s)$ have LHP roots and such that low frequency sensitivity is optimally small.

The coefficients of s which determine $P(s)$ are constrained such that $P(s)$ is stable.

$$
P(s)=\left(s+P_{1}\right)\left(s^{2}+P_{2} s+P_{3}\right)\left(s^{2}+P_{4} s+P_{5}\right)\left(s^{2}+P_{6} s+P_{7}\right)
$$

Thus, all ($P_{1}, P_{2}, \ldots, P_{7}$) must be constrained positive. To insure $C(s)$ is stable, the Routh-Hurwitz column coefficients are constrained positive. Low frequency sensitivity is improved by trying to force the polynomial $B(s)$ to have a "free s."

Since Partan is constrained from entering a nonfeasible region (where a constraint is violated), the initial point must not violate any constraint. Experience has shown that an initial point cannot be selected such that both $P(s)$ and $B(s)$ are stable without some previous knowledge. Therefore, the Partan program has been modified so that the program starts with only those constraints that are not violated. Using each constraint which is violated as a cost function, each constraint is eventually satisfied. Then the program optimizes the desired cost function (low frequency sensitivity in this case).

The progress toward the solution of the fuel valve problem can be seen in the output listing. The listing shows that at the initial point $\overline{\mathrm{P}}=\left(10^{4}, 10^{4}, 10^{8}, 10^{4}, 10^{8}, 10^{4}, 10^{8}\right)($ selected arbitrarily) the Routhian array had the form

$$
\begin{array}{lll}
\left(R_{1}>0\right) & (-) & (-) \\
\left(R_{2}>0\right) & (-) & (-) \\
\left(R_{3}>0\right) & (-) & (-) \\
\left(R_{4}>0\right) & (-) & (-) \\
\left(R_{5}>0\right) & (-) \\
\left(R_{6}>0\right) & (-) \\
\left(R_{7}<0\right) \\
\left(R_{8}\right. \text { not computed) }
\end{array}
$$

Since R_{7} is the first negative value (-2.123×10^{20}) reached in the first column, the cost function y is set equal to R_{7} and the Partan search is initiated. After one gradient calculation and the resulting
vector search, the cost function $\left(R_{7}\right)$ is made positive $\left(5.349 \times 10^{19}\right)$ at some point \bar{P} ' on the gradient.

The Routhian array is now checked for sign changes beyond R_{7} and the last coefficient, R_{8}, is found negative $\left(-1461 \times 10^{25}\right)$. Starting at $\bar{Z}_{1}=\bar{Z}_{0}^{\prime}$, a single gradient search forces R_{8}, the new cost function, positive (1.402×10^{23}) at $\overline{\mathrm{P}}^{\prime \prime}$. Thus, after twenty function evaluations, the Routh Table indicates that for the stable polynomial $P(s)$ given by the coefficient $\overline{\mathrm{P}}$ ", the polynomial $\mathrm{B}(\mathrm{s})$ is also stable (LHP roots).

For good low frequency sensitivity, it is desirable that the zeroth power of s coefficient be zero. This coefficient is selected as the cost function, and its initial value at $\overline{\mathrm{P}}$ " is 1.653×10^{28}. After 13 acceleration and gradient steps involving 116 function evaluations, this coefficient is reduced 16 orders of magnitude to 1.002×10^{12}. The polynomial $P(s)$ is

$$
\begin{aligned}
& (s+12,310)\left(s^{2}+15.450 s+433\right)^{3}=s^{7}+5.9 \times 10^{4} s^{6}+1.29 \times 10^{9} s^{5} \\
& +1.25 \times 10^{13} s^{4}+4.54 \times 10^{16} s^{3}+3.82 \times 10^{15} s^{2}+1.07 \times 10^{14} s+1.002 \times 10^{12}
\end{aligned}
$$

and the corresponding $B(s)$ is

$$
\begin{gathered}
s^{7}+5.4 \times 10^{4} s^{6}+1.19 \times 10^{9} s^{5}+1.38 \times 10^{13} s^{4} \\
+9.15 \times 10^{16} s^{3}+3.53 \times 10^{20} s^{2}+6.82 \times 10^{23} s+1.18 \times 10^{27}
\end{gathered}
$$

The result shows that the improvement of low frequency sensitivity in the output has been achieved by a controller with three poles at
about $0.003 \mathrm{sec}^{-1}$, and the other poles at frequencies greater than 12,000 sec^{-1}. The low frequency gain will be on the order of 10^{15}.

The result also indicates how this search technique can be improved and how very high order problems of this type can be treated. Since the initial guess \vec{P} was a polynomial with a neg-real root and a third order, complex pair of roots, the number of search parameters could actually have been reduced to three. This would have reduced computation time for each of the six gradient calculations by a factor of $3 / 7$, since fewer perturbations are required. Also, if $P(s)$ were given as 13 th order instead of 7 th order, the initial guess could have been

$$
(s+10,000)\left(s^{2}+10,000 s+10^{8}\right)^{6}
$$

i.e., still only three search parameters. There is, however, no guarantee that a solution for such a $P(s)$ exists. If the search failed to converge to a stable $B(s)$, the initial guess could be generalized to

$$
(s+10,000)\left(s^{2}+10,000 s+10^{8}\right)^{3}\left(s^{2}+40,000 s+2 \times 10^{8}\right)^{3}
$$

and the search conducted with five parameters, etc.

Conclusion

Partan is an efficient program, which can be modified to handle complicated, constrained cost functions. It is especially suited to problems where the cost is explicit but the gradients must be computed by perturbation.

References

[1] Buehler, R. J., Shah, B. V., and Kempthorne, O., "Methods of Parallel Tangents," Chemical Engineering Program Symposium, Serial No. 50, 1964.
[2] Wilde, D. J., and Beightler, C. S., Foundations of Optimization, Prentice Hall, Chapter 2, 1967.
[3] Harkins, A., "The Use of Parallel Tangents in Optimization," Chemical Engineering Program Symposium, Serial No. 50, 1964.

```
    PROGRAM MASTER.(INPUT,OUTHCR)
    COMMONZ(1O),D(IO),N,B,M,YR,LODFM(ZO),JJ OKRGH(9)
    #IMENSION R(10),RCI(10),BC2(10)
    QEAD I,E,A,NQL,(Z(I),R(I)OI=ION)
    & FORMAT (2E10.0.2I10/(2E10.01)
    2. FORMATIWIPARTAN SEARCH IN&I2* VARIABLES#//% WITH RANGE FRACTION A
        I= ET.O& AND TERMINATION CRITERIA E =@E7.O)
        N1=N&1
        M=1
        KR=1
    95 J=0
        no-c_3m
    3 DFM(I)=1.0
    nO4 I =1,M
    4 RCI(I)= Z(I)
    90 _KP = KR* * 
        IF (KR.GT.NI) STOP
        CALL COSTS(KRQZ,YB,RH)
        IF (YB,GT, O.O) GO TO 90
        PRINT GOJOM O(Z(I),I=1,N),YB
        R=0.1
        CALLGGAO(A,P)
        CALL GOLD(E,1)
        J=?
    5 PRINT GOJ,M (Z(I),I EI,N),YB
    6__-_FORMAT ($OP*I3* EVALUATION=#I4/(10E13,31)
    IF (YB.GT. 0.0) GO TO 95
    DO 7I =1,N
    BCZ(I)=Z(I)
    J=N+1
    CALL GmAD(A,R)
    CALL GOLD(EOI)
    GRINT G,JOM,(Z(I),I=1,N),YB
    IF (YB,GI, 0.0) 60 T0 95
    IF (JJ.EQ.O) GO TO 9
    DO 8 I = I.aN
    8 D(I) = (Z(I)-BCI(I) )/3.0
        CALL GOLO(E,O)
        IF (YB.GT. O.O) GO TO 95
        GO TO 10
    9 CALL GFAD(A,R)
        CALL GOLD(E,I)
        IF (YB.GT. 0.0) GO TO 95
    10-N011-1=1.N
    11 BCI(I) = BCZ(I)
        l=1*1
        IF(J.LT. 25) GO TO 5
        STOP
        END
```

```
IF ( 0.1 T, E) GO TO 17
ç \(10 \quad 15\)
12_-_ONTINUE
no \(125 \mathrm{~J}=10 \mathrm{~N}\)
IF \((x(1) . G T \cdot 0.0) \quad 6010125\)
\(A=8 / 1.618034\)
IF (B.LT.E) GOTO 17
GO 7015
125 CONTINUE
\(Y E=Y\)
\(00131=19 \mathrm{~N}\)
\(13 \quad 7(I)=X(I)\)
IF (YB GT: O.O) RETURN
AO TO 15
\(14 \quad 5=-5\)
\(15 \quad K K=K K\) * 1
    IF (KK.GEa 1) RETURN
    no \(16 \mathrm{I}=1 \mathrm{~N}\)
    \(16 \quad 0(I)=0(I) / 10618034\)
    ©0 7010
    \(17 \quad\) PRINT \(18, K R(Z(I), I=1, N) \cap Y B\)
    18 FORMAT (* EVALUATION \(=\$ 14 /(10\) E13.3) )
        STOP
    END
```

SURROUTINE GRAD (A,R)

OIMENSION X(10), DY(10),R(10),DF(10.10)
$1 \quad \begin{array}{ll}n 01 \\ X(I)=Z(I)\end{array}$
$002 \mathrm{~J}=1 \mathrm{KR}$
$2 \quad D F\left(J_{0} K R\right)=$ RH(J)
$\cap Y M=0.0$
$3 \quad X(I)=Z(I)+A * R(I)$
CALL COSTS (KR,X,Y,RH)
$\cap Y(I)=Y-Y B$
$M=M \neq 1$
DYM $=$ OYM + OY (I) $\# 2$
กO $4 \mathrm{~J}=1, \mathrm{KR}$
IF $\operatorname{DFF}(J), N E, 0.0) \quad$ OO $T 04$
$D F(J, I)=R H(J)=D F(J, K R)$
4 CONTINUE
$x(I)=2(I)$
$i=I+1$
TFITLEN $) 60$ TO 3
DYM $=$ SQRT (OYM)
$005 I=1, N$
$5 \quad D(I)=D Y(I) / D Y M$
$008 \mathrm{~J}=1, \mathrm{KR}$
IF $\operatorname{COFN}(1), N E, 0,0)$ GO TO 8
$D O{ }^{6} I=1, N$
$D F M(J)=D F M(J)+D F(J, I) * 2$
तFM(J) $=\operatorname{SQRT}(D F M(J)$
$00.7 I=19 \mathrm{~N}$
$7 \quad D(I)=D(I)+D F(J, I) / D F M(J)$
Q CONTINUE
$0075 \mathrm{~J}=19 \mathrm{~N}$
IF $\operatorname{OFM}(J+7), E Q, 0,0) D(J)=D(J)+1,0$
75 CONTINUE
$009=1, N$
$9 \quad D(I)=8 * R(I) \$ 0(I)$
RETURN

END


```
SURROUTINE COSTS (KR,Z,Y,RH)
```



```
1.1.301E25.玉2.283E29/,R/81*0.01
\(A(1)=1.0\)
\(R(2)=2(1)\)
\(001 K=3.8\)
\(R(K)=0.0\)
\(0035=1.3\)
\(12=2 \sharp \mathrm{~J}\)
\(0021=1, \sqrt{2}\)
\(K=J_{2}+3=1\)
\(R(2)=B(2)+Z(J 2)\)
\(p R=-B(8)\)
n0 \(45 I=108\)
\(J=9 m 1\)
\(B B=0.0\)
```



```
\(M=J * 1-K\)
\(4 \quad A B=B 9 \quad B(K) T(M)\)
\(45 \quad P(J)=B B\)
\(J=-1\)
no \(5 I=1.4\)
\(J=J * 2\)
\(P(1,1)=B(J)\)
\(5 \quad Q(2, I)=8(J+1)\)
\(007 \mathrm{~J}=2, \mathrm{KR}\)
\(L I M=K R * 2-J\)
no \(6 I=20 L I M\)
\(6 \quad P(J+1, I m 1)=R(J=1 \theta I)-(R(J=1,1) \# R(J, I)) / R(J \cap 1)\)
IF \((Q(U) 1,1), E 0,0,0) R(J \& 1,1)=00001\)
CONTINUE
DO 8 I \(=1, K R\)
\(R H(I)=R(I \cdot 1)\)
\(R(G) l=R=\)
\(Y=R(K R+1,1)\)
RETURN
END
```


PATTERN SEARCH

Introduction

This report describes the use of an optimizing search procedure for the design of a control system where some of the state variables of the system are unavailable. This design procedure is useful in achieving an approximate closed-loop transfer function rather than obtaining an exact closed-loop transfer function. The advantage of this procedure is that the complexity of the compensation is reduced over the state variable design. This procedure is applied to the design of an inlet control system which minimizes the response of the shock wave position to pressure disturbances at the compressor. The search procedure described starts with an initial choice of parameters and makes small changes in these parameters until an improvement is obtained. Then larger steps are made until no further improvement is obtained. When the larger steps are not fruitful, successively smaller steps are taken. At this point the search procedure has found a local minimum.

The advantage of this type of procedure over a more classical design procedure is its extreme flexibility. The design may include constraints on the parameters, a variety of objectives, and a variety of parameters in the compensator. The performance objectives may include either time domain or frequency domain parameters. Initial design considerations may be used to select an initial choice of parameters. This procedure is therefore more adaptable to practical applications where all the state
yariables are unavailable or other limitations which make othex desigm procedures impractical.

Pattern Search

The pattern search is based on the following philosophy:

1. If an improvement is made in a given direction, continue to move in that direction.
2. If an improvement is made with a small change in parameters, try a bigger change.

The pattern search has two modes of operation depending on the number of previous successes or failures:

1. Mode 1. Successful Move.

If a successful move has been made, then try another larger move in the same direction. An additional increment to the left or right is added in if the previous successful move was made by altering the direction of the move. If no success is made, the next mode is used.
2. Mode 2. Local Search.

Small moves are made in the same direction as the last success and at right angles to this direction. If one or more successes are made after these moves, then the system returns to Mode 1 . If no improvement is made, a smaller step is tried. If more than ten reductions in step size are made, the search is terminated on the presumption that a local minimum has been found.

The following application is to demonstrate the use of this procedure for a jet engine control system. Details of the computer program are given in the last section.

The 40-60 Inlet Control Problem

The outline of the system is shown in Fig. 1, and the 40-60 inlet control system is shown in block diagram form in Fig. 2. It is desired to minimize the response of the shock wave position x to disturbances at the compressor side of the inlet. In the block diagram the noise input occurs in front of $G(s)$ which describes the dynamics of the inlet. The exit pressure \mathcal{F}_{e} is related to the undelayed shock position by the transfer function $P(s)$. The control of the shock position is affected by the shunting of air through six bypass doors whose dynamics are $D(s)$. The response of the system to disturbances when no control is present is shown in Fig. 3. The objective of the system is to provide a compensator whose dynamics are $C(s)$ that will result in a lower response than $G(s)$ shown in Fig. 3.

$$
\begin{gathered}
G(s)=\frac{(388.12)(s+80.3 \pm j 172.20)(s+173.16 \pm j 332.63)(s+75.71 \pm j 575.04)}{(s+46)(s+44.58 \pm j 281.49)(s+84.22 \pm j 477.63)(s+130.24 \pm j 738.61)} \\
\frac{(s+82.8 \pm j 946.38)}{(s+191.02 \pm j 1083.29)} \\
P(s)=\frac{s+1010}{1010} \\
D(s)=\frac{1.3073 \times 10^{20}}{s(s+2000)(s+318.5 \pm j 1899)\left(s^{3}+3890.38 s^{2}+2.1038 \times 10^{7} s+1.76187 \times 10^{10}\right)}
\end{gathered}
$$

Performance Specification

A transfer function is specified by the user which determines the desired response of the system. The compensator C (s) which has two poles and two zeros is selected to minimize the mean square difference between the desired transfer function and the actual closed-loop transfer function over all frequencies. The actual transfer function should be stable. The parameters which specify the compensator are constrained so that the system is stable. The subroutine PLANT is used to construct the fixed part of the actual transfer function. The subroutine ERR constructs the difference between the actual transfer function and the desired transfer function for any particular gain, pole position, and zero position of $c(s)$. The subroutine INTSQ evaluates the integral of the magnitude squared of the error over all frequencies. The details of these programs are included in the end of this section.

Computer Results

The desired transfer function, $T D(s)$, was selected to be

$$
T D(s)=\frac{388.12 s}{(s+30)(s+388.12)}
$$

The actual transfer function $T(s)$ between the pressure disturbance and the undelayed shock position is given by

$$
T(s)=\frac{G(s)}{1+G(s) P(s) C(s) D(s)}
$$

If the numerator of $G(s)$ is written $G N$ and the denominator is written $G D$, and if the poles of $C(s)$ are selected to be very large, then $C(s)$ is approximately given by the numerator polynomial, C. The doors are given by the ratio DN/DD and the pressure transducer by P. The actual transfer function becomes

$$
T(s)=\frac{G N \cdot D D}{D \cdot G D+D N \cdot P \cdot C N \cdot D N}
$$

The numerator TN is independent of the choice of the compensator. It is calculated by the subroutine PLANT. Similarly, the following products are calculated in the same subroutine:

```
GP(s) = GN}\cdot\textrm{P}\cdot\textrm{DN
    GD(s)=D\cdotGD
```

Then whenever a new value for $C(s)$ is chosen where

$$
C(s)=C N=\frac{X(1)}{X(3)}\left[X(3)+X(2) s+s^{2}\right],
$$

the actual transfer function becomes

$$
T(s)=\frac{T N}{G D^{\prime}+G P \cdot C N}
$$

The procedure is carried out in the subroutine ERR. The error is formed from the integral of

$$
T D(s)-T(s)=\frac{D N(s)}{D D(s)}-\frac{T N(s)}{T D(s)}=\frac{D N \cdot T D-D D \cdot T N}{D D \cdot T D}
$$

The subroutine INTSQ is used to calculate the integral of the squared magnitude of the above polynomial. If the system is unstable, it is detected by the subroutine ROUTH and a large value of the objective function is returned.

The results of the computer program are the compensator whose parameters are

$$
c(s)=1414 \frac{\left(s^{2}+0.6 \cdot 1578 s+1578^{2}\right)}{1578^{2}}
$$

This compensator yields the closed-100p transfer function shown in Fig. 4. The response is significantly better than the open-loop response at frequencies below 100 H but approximately 10 db worse in the unity gain crossover region. The problem is more evident from a study of this result. A large feedback is needed at frequencies below 100 Hz . However, at frequencies above 100 Hz , the doors have a rapidly decreasing response which creates a very large phase shift at the point where the loop gain is unity which results in an unstable system. Either the phase shift must be decreased in magnitude or the gain crossover must be at a lower frequency. If the feedback gain is reduced, the system will respond just as an open-loop system at frequencies above the unity gain point which is not entirely satisfactory. By adding more zeros in the region given by $C(s)$, a better response is possible, as shown in Fig. 5.

The numerator of compensator associated with Fig. 5 is:

$$
C(s)=\frac{8,010\left(s^{2}+0.8 \cdot 1987 s+1987^{2}\right)^{2}(s+3964)}{3964(1987)^{4}}
$$

By adding five zeros, the response is always below -10 db and is smaller than -20 db for all frequencies below 100 Hz .

Computer Program

The relations between the subroutines of this program are shown in Fig. 6. The transfer functions associated with Fig. 2 which are independent of $\mathrm{C}(\mathrm{s})$ are computed in the subroutine PLANT for use in calculating $T(s)$. The initial values of the parameters are used to provide a starting point for the pattern search. When a new set of parameters are selected, the subroutine ERR uses these new values to calculate the transfer function $T(s)$. This transfer function is subtracted from the desired transfer function $D(s)$ and the resulting error function $E(s)$ is squared and integrated by the subroutine INTSQ. INTSQ uses the subroutine POLYSQ to calculate the square of the numerator of $E(s)$. If the resulting integral Y is bigger, a local search in the vicinity of the last success is made. Successively smaller steps are taken until no further improvement is made.

A listing of the complete program follows.

Fig. 6. General Flow Diagram of Pattern Search Program.

00.0003		
000003	CTMENSTCN BASE(3), 「EAU(3)	
000002	CAI.L FLAAT	68
000004		
000005	FACE (2) $=9 \% 7$	
000007	HFDO (1) $=1000$.	
000010	HFAU (2) $=1055$.	
000012	CALL PATEAN (2,BASE,HEAU)	
000015	STCH	
000017	END	

000002 000002

000002
00000.3

000005
000006
000012
$0000: 3$
000015
000020
000021
000023
000027
000032
000033
000035
000041
000044
000045
000047
000053
000054
000056
000061
000062
000064
000070
000073
000074
000076
000102
000105
000106
000110
000114
000117
000120
000122
000126
000127
000130
000132
000135
000136
000140
000144
000145
000147
000150
000152

जリスnのUiTNF PLANT

C NuNFRATCF CF PRESSURE TRANSDUCER
「A＝1．3073F20
$P(1)=1) n$
$P(2)=0 \wedge / 1010$.
C NUNEGATCF CF INLET DYNAMISS
（心）（1）$=(172 \cdot 2 \% 42+80.34 * 2)=388.12$
GNT（2）$=80.347 .4388 .12$
GN1（3）$=3$ 明 12
（N2（1）$=(173.16 * * 2+332.63 * * 2)$
$6 N 2(2)=173.16$ 2．
GN2（3）$=1$ ．
CALL PLYMLT（CN1，3，GNZ：3：GN，0）
GN1（1）$=75.71 * 32+575.04 * 32$
CN1（2）$=75.71 \$ 2$.
GN1 13 ）$=1$ ．
CALL PLYNLT（GNI，3，GN：5，GN2，0）
CN1（1）$=82.8 * 2+946.38 * 2$
©N1（2）＝82．8＊？
GN1（3）$=1$ ．
CALL．PLYNLT（GNI，3，GN2，\％，GN，O）
OENOMINATSF OF INLET DYNAMICS
$\operatorname{CDI}(1)=46$.
$\operatorname{GD1}(2)=1$ ．
$G D(1)=44 \cdot 58$＊4 $2+281 \cdot 14$ \％ 2 $G D(2)=44.58 * 2$ 。
$\mathrm{CO}(3)=1$ ．
CALL PLYMLTYGD1，2，GD，3，GD2，0）
GDI（1）$=94.22 * * 2+477.63 * * 2$
GO1（2）$=84.22 * 2$ ．
GDI（3）$=1$ ．
CALL PLYNLT（GDI，3，GD2，4，GD，0）
G01（1）＝130．24＊＊2＋738．61＊＊2
$\operatorname{GDI}(2)=13 n \cdot 2442$ ．
$\operatorname{GD1}(3)=1$ 。
CALL PLYNI，T（GD1，3，GD：6，GD2，0）
G $\cap(1)=151.024 * 2+1083.29 * * 2$
GD（2）$=191.0242$ ．
CD（3）$=1$ ．
CALL PLYNLT（GD 3，GD2，8，GD1，0）
C CENOMINATOF OF INLET DOORS
O1 $(1)=0$ ．
$01(2)=2000$ ．
Ci $(3)=1$ ．
$\Gamma(1)=318.5 * 42+1899 . * * 2$
$D(2)=318.542$ ．
$\mathrm{C}(3)=1$ 。
CALL PLYNLT（D1，3，D，3，D2，0）
C1（1）$=1.76187 E 10$
$C 1(2)=2.1038 E 7$
$01(3)=3890.38$
C． $1(4)=1$ 。
CALL PLYNLT（D1，4，02，5，0，0）
C DEFINE NUMERATOR OF CLOSED LOOP TRANSFER FUNCTION

000：5； 000162 000166
000172
000.174

000200
$000: 00$
000202
000203
003205
00020 ？
000224
000225 000225

```
    CALL PLYMIT(GN,9,DロG%分の0)
    CALL P(YMIT (GO1,10,0,O,G0,0)
    CALL PLYMIT(GN,9%F,2gGHOO)
    no in 1=11,15
    106[(1)=0.
        ON(1)=0.
        DN(2)=340.12
        OD(1)=-1164.36
        OD(2)=-418.12
        00(3)=-1.
        FRINT 2OO,GD.GP,TN,DN,DD
    gFTURN
200 FORNAT (1XOIOE13.5)
    ENT
```



```
                                    7 1
    DEFINITION CF SYMGOLS IN ARGUMENT LIST
    A(I). N(LTTPLICAND COEFFICIENTS IN THEOROER A(T) *S**(I-I)
    L. NGNPEH OF COEFFICIENTS OF A
    R(I), NULTIPLIER COEFFICIENTS IN THE ORUER B(I)*S*#(I-I)
    *. NUMEEH OF COEFFICIENTS OF B
    C(I). PAOCUCT COEFFICIENTS IN THE ORUEK C(I)#S*#(I-I)
    N. NumEER OF COEFFICIENTS OF C
    KEMARKS
    IF N=0. C(I) SET TO ZERO AND PRODUCT FORMED. OTHERWISE THE PRUDU
    AND SUN AEWC= OLD C * AWB IS FORMED.
    DINENSICN A(10), B(10),C(20)
    LPN=L+N-1
    IF (N) 10,10.12
    CO 11 J=1.LPM
    C(J)=0.0
        DO 13 J=1.LPM
        NAX=MAXO(J+1-M,1)
    NIN=MINO(L,J)
    CO 13 I=MAX,MIN
13 C(J)=A(I)*E(J+I-I) * C(J)
    AETURN
    END
```

030006
000006
030060
000007
000010
000012
000015 00002 i
00702.4

000025
000026
000030
000040
000042
000044
000072
000075
000077
000101
000105
000131
000133
000135
000136
000140
000151
000156
000160 000161. 000162 000174 000200 000201 000205 000206 000207 000215 000241 000244 000250 000251

000251 000251 000251 000251

SUran解TAF PAIERA（NoHASEのHEAU）

```
    MTMENSTCN PASE(10) &HEAD(10),TEMP(10),CUKVE(10)
    KごんNT=!
    TCLP=0
    KFCMS=1
    NAXKFN=100
    PD\NT こ00
    CALL EKA(HEAC,YH)
    *O TO 20
    C accelfFatec move
        10 NODE=1
            ICUT=0
        G0011 I=1,N
        11 TFNP(T)=2.* HEAD(I)mBASE(I)*CURVE(I)
            CALL ERA(TEMP,YT)
            KFCNS=KFCNS+1
            IF(KPANT.FG.1) PRINT 2O2,MODE,YT,(TEMP\I),I=I*N)
            IF(YT-YH)12020,20
            SUCCESSFLI. MOVE, SPRING FORWARO
            12 DO 1.3 I=I,N
            HASE(I)=MFAD(I)
        13 HEAD(I)=TENP(I)
            PRINT 201,KFCNS,MOOE,YT,(HEAD(I),I=1,N)
            YH=YT
            GOTO G
            FAILURE GO TO LOCAL SEARCH
            20 SPEE\cap=1.
            NODE=?
            CALL LCLSR(N,MEAD,BASE,CURVE,SPEED,ISUCC,MOUE,KFCNS,YH,KPRNT)
                IF(KFCNS,GT.MAXKFN) RETURN
            IF(ISUCC) 31,31,10
            NANY FAILURES, CUT STEPSIZE
            31 SPFED=0.
            NODE=4
            CALL LCLSF(N,HEAD,BASE,CURVE,SPEED,ISUCC,MODE,KFCNS,YH,KPRNT)
            IF(ISUCC) 41.41.10
        41 NODE=6
            IF(ICUT.GT.10) GO TO 99
            ICUT=ICUT+1
            O\cap 42 I=I,N
            42PASE(I)=.5 * BASE(I)*.5*HEAD(I)
            PRINT 201, KFCNS,MODE, Y H , (BASE(I),I=I,N)
            GO TO 31
            9S PRINT 203
            FFTURN
    200 FORNAT (#1 PATTERN SEARCH HAS BEEN CALLED *//* KFCNS MODE* 5X
            i*CCST*5X*PARAMETER VALUES*)
    201 FORMAT (2\4.10(E12.4))
    202 FORMAT(* TEMP*,I4:10(E12.4))
    203 FOFMAT (* A LOCAL MAXIMUM HAS BEEN REACHED *)
    END
```

SUAmOUTTAF LCLSR (NqHEAU,BASE, CURVE,SPEED, ISUCC,MODE,KFCNS,YH.

000015

000015 000015

000017
000020
000021
000034
000036
000073
000075
000100
000102
000116
000120
000155
000157
000162

000164
000165
000176 000200
000235 000237

000242 000243

000245 000246

000251 000254 000256 000260 000261 000262 000264 000271 000272 000274 000331 000333

000336 000340 00.0346 000350 000252 000407 000411 000414 1 KEhNTI

C LOCML SEAKCH
TCICCC=0
YRFST=YF
C TQY FOKwARE NOVE
门O2! $T=1 . A$
CUFVF(T)=0.
ف) TENH(I) $=-\operatorname{FAD}(I)+(.4+S P E E D)$ (HEAO(I)-BASE(I))
CALL EGF (TFMP,YT).
IF (KPQNT.FG.1) PRIAT 202'MODE,YT, (TEMP(I), I=I N N)
$K F C N S=K F C N S+1$
IF (YT-YH) 26.22.22
C FAILIRE MCVE BACK
$22 \Gamma 023 \quad I=\Pi \quad N$
23 TENP (I) $=$ YFAD(I) + (SPEEU-.4) (HEAD(I) - BASE(I))
CALL EFA (TEMP,YT)
IF(KPRNT.FG.1) PRINT 202,MODE,YT, (TEMP(I),I=1,N)
KFCNS=KFCNS*1
IF $(Y Y-Y H) 26,24,24$
24 IF (SPEFC.LE.O. 1 GO TO 30
ANOTHER FAILURE,MOVE BACK
DO $25 \quad I=1, N$
$25 \operatorname{TENP}(I)=r F A D(I)+S P E E D$ (HEAD (I)-BASE(I))
CALL EAR (TEMP,YT)
IF (KPRNT.FG.1) PRINT 2OZ,MODE,YT, (TEMP (I),I=I•N)
KFCNS=KFCNS+1
IF (YT-YH) 26.30 .30
C SUCCFSS GO TO ORTHOGONAL SEARCH
26 ISUCC=1
YREST $=Y T$
C ORTHOGONAL SEARCH
30 NORTH=1
IF(A.GT.2) GO TO 32
C NOVELFFT
$\operatorname{PERP}(1)=(-\operatorname{HEAD}(2)+\operatorname{BASE}(2)) \sharp .4$.
$\operatorname{PERP}(2)=(\operatorname{HEAD}(1)-\operatorname{BASE}(1)) * .4$
AORTH=AORTH +1
GO 7050
32 RFTURN
50 On 51 $I=1, ~ A$
51 TENP(I) $=$ TEMP(I) \quad PERP(I)
$C M=1$.
CALL ERA (TEMP,YT)
IF(KPRNT.FG.1) PRINT 202,MODE,YT. (TEMP(I),I=I:N)
KFCNS=KFCNS+1
IF (YT -YEEST) $55,52,52$
FAILURE, NOVE RIGMT
$52 \mathrm{CO} 53 \quad I=19 \mathrm{~A}$
53 TENP(I) $=$ TENP(I)-2*PERP(I)
$C M=-1$.
CALL ERG (TENP,YT)
IF (KPRAT,FG•1) PRINT 202,MODE,YT,(TEMP(I),I=1,N)
KFCAS=KFCNS*1
IFI YT -YREST $\quad 55.57 .57$
$550056 \quad I=\ddot{I}, N$
$0004: 6$
000424
000425
000427
000427
000431
000436
000440
000441
000443
000446
000452
000512
000514
$000 \leq 15$
000517
000520
000526
000527
000531
000544
000546
000547
000551
000606 000810

000613 000615 000623 000625 000627 000664 000666

000671
000672
000674
000675
000711
000712
000714
000727
000731
000733
000734
000734
000734

56 CUEVF(T) = CNaPERH(I) + CURVE(I)
1 SUCC=1
YOFST=YT
60 1059
C FATlHEE MESTORE TEMP
$570052 \quad \mathrm{I}=1$, n
SE TFNP(T)=TFMP(I) + PERP(I)
55 PF(ADRTH.LT.N) GO TO 32
GO IF (ISUCC.FG.O) GO TO 70
61 Co 6? $I=1, N$
BACE (I) = HEAD(I)
$62 \operatorname{HEAD}(\mathrm{I})=\operatorname{TFNP}(\mathrm{I})$
PRINT $201,(K F C N S, M O D E, Y B E S T,(H E A D(I), I=I, N),(C U R V E(I), I=I, N))$ $Y_{H}=Y$ GEST
AFTURN
70 NODE = NCDE +1
AROT $=1$
C Nove half left
IF (N.LE.Z) GO TO 80
72 FFTTURN
80 Co el $1=1.1$
$81 \operatorname{TENP}(I)=\operatorname{TENP}(I)+(\operatorname{PERP}(I)+.4$ *(HEAD(I)-BASE$(I))) * .707$
AROT=NHCT+1
$C N=1$.
CALL EAR(TEMP,YT)
IF(KPRNT.FG.1) PRINT 202,MODE,YT,(TEMP(I).I=1,N) KFCAS=KFCNS*1
IF (YT - YEEST) 85,82,82
FAILURE, NCVE HALF RIGHT
82 0n $83 \mathrm{I}=1$, A
$83 \operatorname{TENP}(I)=\operatorname{TENP}(I)-1.414 * \operatorname{PERP}(I)$
$C M=-1$.

- call efra (temp,yt)

IF(KPRNT.EG.1) PRINT 202,MODE,YT,(TEMP(I),I=1,N)
KFCAS=KFCNS +1
IF (YT -YBEST) 85.87.87
SUCCESS
85 ISUCC=1
YREST $=$ YT
CO $86 \mathrm{I}=1$, N
$8 \in \operatorname{CURVE}(I)=\operatorname{CURVE}(I)+\operatorname{CM}(\operatorname{PERP}(I) * .2$ *(HEAD(I)=BASE(I))$) .70$ i
co TO 89
fFSTORE TENP
87 DO 8 \& $I=1, n$
$88 \operatorname{TENP}(I)=\operatorname{TEMP}(I)-(-\operatorname{PERP}(I)+.2 \quad$ (HEAD$(I)-B A S E(I))) * .707$
85 IF (NRCT.LT.N) GO TO 72
90 IF (ISUCC) 91.91.61
s 1 RETURN
201 FORMAT (214.10(E12.4))
202 FOFMAT(${ }^{2}$ TEMP\#,I4,10(El2.4))
END

000005
000005
000005
000006
000007
000011
000014
000020
000023
000030 000032 000035 000040 000044 000050 000054 000062 000062

SURGNUTIAF ERR (X, Y)

CINENSICA TO(20),C(10).X(10),EN(20),EO(20)
$x(3)=3.556$
$C(1)=x(1)$
$C(2)=x(1) * x(2) / x(3)$
$C(3)=X(1) / X(3)$
CALL PLYNLT (C.3,GP,15,TU,0)
ก○ $10 \quad 1=1.17$
10 TO(I) $=T$ TI (I) $+G O(I)$
CAIL FCUTH (TD,Y,17)
$Y=Y * 1 . F 100$
IF (Y. SE.).O) RETURN
CALL PLYMLT(DN, 2,TD,17,EN,O)
CALL PLYNLT(DD,3,TN,16,EN,18)
CALL PLYMLT (DD,3,TD,17,ED,0)
CALL INTSC(ED.EN,19,Y)
RETURN:
END
suanoutinf rcuth (X, Y, L)
CINENSTCA $x(20), A(20,10)$
CATA A/200*0.01
$Y=J=0$
$N=L-1$
CO1 I $=1,1, \mathrm{M}, 2$
$\checkmark=J+1$
$A(1: J)=x(I)$
$\Delta(2, J)=x(I)+1)$
IF (L - 2戶J) $3.3,2$
$A(1, J+1)=x(L)$
$J=$?
$N=M=(1 .+1) / 2.0$
IF $(A(J .1) * A(J-1,1)) 7,5,5$
IF (J.EG.L) HETUKN
$006 I=2, M$
$A(J+1,1-1)=A(J-1,1)=(A(J-1,1) \neq A(J, 1)) / A(J, 1)$
IF (A(J + 1.1).EQ.0.0)A(J + 1.1) $=0.000001$
$J=J+1$
$N=N+1-J / 2.0$
CO TO 4
$Y=1.0$
gETURN
ENO

```
    SURHOUTINE INTSN(A,C,N,S)
    C FETURNS S=INTEGRAL OF C(S)&C(-S)/A(S)#A(-S) TO MAIN PROGRAM.
    C B(S) HAS N-1 TERMS, A(S) HAS N TERMS.
    C E(T) IS CCEF OF S##(2Im`2)
    C. C(I) IS COEF. OF S**(I*1)
    C
    IF THE LCWER OROER DEN. AND NUM. COEFF. ARE SMALL (LESS THAN D) THE
    OTVIDE FCTM NUM. AND DEN. BY S**2.
    K=1
    O=1,0E=6
    IF (ABS(A(i))-D) 2,2,20
    If (ABS(C(1))-D) 4,4,20
    IF (K-1) 5,5,6
    PRINT 200
    PRINT 201.A(1):C(1)
    K=K+1
    N=N-1
    DO 10 I= 1,N
    \Delta(I)=A(I+I)
    IF(I-N) 8,10.10
    C(I)=C(I+I)
    CONTINUE
    CO TO 1
    CALL PLYSO (C,N,B)
    NM2=N-2
    DO.50 K=1,AM2
    NK=N-K
    BA=B(NK)/A{NK+I}
    AA=0.
    IF(K.EG.I) GO TO 40
    AA=A(NK+2)/A(NK+1)
    40 NMK=(N-K)/2
    DO 50 I=1, NMK
    NKI=NK-2あ!+1
    B(NK-I)=E(NK-I)-BA#A(NKI)
    A(NKI+I)=A(NKI+I)-AA&A(NKI)
    CONTINUE
    S=ABS(F(1)/(2.*A(2)*A(1)))
    RETURN
    200 FOFMAT {# THE FOLLOWING COEFF. WERE FOUND TO BE SMALL ANO CANCELL
        IED IN THE NUMERATOR AND DENOMINATOR*)
        FOFMAT (# THE DENOMINATOR COEFF.** EIO.3 * THE NUMERATOR COEFF.
        I=# E10.3)
        END
```

000006
000010
000012
000013
000014
000016 000020 000022 000037 000040 000042 000043 000044 000046 000051 000053 000055 000071 000072

```
SURGOUTINF PLYSQ (CON:E)
EINENSICA C(4O):B(40)
RETURNS E(S) \(=C(S) A C(-S)\) TO MAIN PROGRAM.
R(T) IS COEF. OF SWHI-I INE \(\mathrm{B}(\mathrm{S})\).
    A-1 is NLMEEH OF COEF. IN B(S) AND C(S).
    A = (N-1)/?
    00 20 I=1.N1
    NO=-1
    F(1)=0.
    II=2*I-1
    00 20 K=1, II
    NO = -I#NO
    R(I)=A(I)+NO*C(K)*C(2*I-K)
    AM1=N-1
    N2=N1+1
    DO 3n I=Nつ.NMI
    IIN=2*T-NMI
    B(I)=0.
    NO=(-1) NMI
    DO 30 K=ITN,NML
    NO =-1NO
    30 E(I)=A(I)*NO*C(K)*C(2*I-K)
    RETURN
    ENO
```


VARIABLE METRIC

Introduction

This report describes the variable metric optimization scheme (hereafter referred to as variable metrics) and its application to the design problem for an inlet control system of an air-breathing jet engine. The application strategy seeks to force the total closed-loop response of the system to match a desired frequency response over a range of frequencies from l cps to 151 cps . Variable metrics is used to minimize the total squared error over this range of frequencies. Successful, physically realizable control of the inlet system is achieved for a variety of parameter values, with system stability checked in each case.

The general type of problem, to which variable metrics is applicable, is the optimization of a scalar-valued function y of N real variables x_{j}, with respect to the N values of these x_{j} : an N-dimensional optimization problem. " y " is an arbitrary performance index, descriptive of the effectiveness of a control system. Thus, scalar optimization techniques are of rather general applicability in the design of optimal control systems.

Three distinct advantages of variable metrics over all other optimization techniques, which the author has studied, are:

1. Internal determination of the search path, leading to an optimum.
2. Adaptability to general statistical study of a particular problem's solution properties.
3. Higher resistance to presence of local optima.

Four distinct disadvantages of variable metrics are:

1. Lack of external control over step size.
2. Sensitivity of reliable convergence to values of convergence parameters.
3. Performance dependent on particular one-dimensional search method used. (This is sometimes adyantageous.)
4. Storage requirements of two $N \times N$ matrices for an N-dimensional optimization problem.

Optimization Procedure

The operation of variable metrics is very simple indeed: One tight computation loop is executed and reiterated until convergence. The purpose of the technique is the minimization of a real-valued function $y(x)$. The point x^{*}, at which y achieves its optimum value, is called an "optimum". An initial point x_{0} in the search for $x *$ is chosen, as an educated guess, at x^{*} on the part of the user.

Initialization

1. The input starting point x_{0} in N-space is used to obtain an initial gradient vector $\nabla y_{0}=\nabla y\left(x_{0}\right)$. Put $H_{0}=I_{N}$ for N dimensional identity matrix I_{N}, and put $j=1$.

Computation Loop

2. A point x_{j} is found on the line through x_{j-1} in the direction of $H_{j-1} \nabla y_{j-1}$ by one-dimensional optimization
of the value of $y(x)$ along this line. Upon the determination of $\nabla y_{j}=\nabla y\left(x_{j}\right)$, the matrix H_{j} is calculated.
3. Put $j=j+1$, and reenter again at step 2 .

For example, a point x_{1} is found on the line through x_{0} in the direction of $H_{0} \nabla_{y_{0}}$ by one-dimensional optimizaiton, where H_{1} represents a "metric", which aids reliable convergence, by prohibiting repeated searches along the same direction ("oscillation"). Upon the determination of $\nabla y_{1}=$ $\nabla y\left(x_{1}\right)$, matrix H_{1} is calculated and the steps are reiterated. Notice that $H_{0}=I_{N}$ means that the initial ($j=1$) one-dimensional optimization is merely a gradient search along the line through x_{0} in the direction of ∇y_{0}.

The metric matrix H_{j} is the sum of two other internal matrices. When computing each of these last two matrices, there is a point at which division occurs. Now, division by zero is not permitted, but convergence of the computations is nevertheless represented by a divisor which is extremely small (numerical zero). Consequently, convergence is checked by the magnitude of the divisors prior to division. Thus, after N iterations, convergence is tested at two places in each additional iteration of the computation loop. The reason for waiting for the completion of N iterations is the prevention of premature convergence to "pseudo-optima", until all different directions of search have been checked at least once.

Here is a summary of the minimization procedure used by variable metrics:

1. Input N-vector x_{0}, calculate $\nabla_{y_{0}}=\nabla y\left(x_{0}\right)$, put $H_{0}=I_{N}$ for $N \times N$ identity matrix I_{N}, and set $j=1$.
2. Search for "minimum" x_{j} on $x_{j-1}-\alpha H_{j-1} \nabla_{j-1}$ for $0<\alpha \leq 1$, calculate $\nabla y_{j}=\nabla y\left(x_{j}\right)$, compute matrix H_{j} (while twice checking for convergence), set $j=j+1$, and repeat 2 .

The reader is referred to the book Foundations of Optimization by Wilde and Beightler for an equivalent, but different, description of the deflected gradient version of variable metrics popularized by Fletcher and Powell. For a detailed exposition of the variable metric method of optimization, reference can be made to Fletcher and Powell's paper of 1963 , or to "GOSPEL" by Dr. Huelsman at the University of Arizona (September 1968).

Discussion of Computer Programs

Subroutine $F P$ represents the digital mechanization of the aforementioned variable metric minimization scheme. As $P P$ is merely a subroutine, input and output data are transferred by means of calling sequence (c.f., computer listing at the end of this section).

In order to function, FP needs only five bits of information and a lot of storage:
N - the number of unknown parameters x_{j}
XO - the initial estimate vector of unknown parameters x_{j}
CRIT - convergence criterion (numerical zero)
L - the maximum number of iterations of the variable metric loop

M - the number of iterations per search of the onedimensional search routine.

The inputs are unaltered by the program, and three outputs are calculated:
x - the final (and optimal) estimate vector of unknown parameters ${ }^{j}{ }_{j}$

QINV - the estimate of the matrix of second partial derivatives at the optimum. This is the storage area for the metric matrix H.
y - the optimized value of the scalar function $y(x)$
Two other variables ICALL and IC are of interest. ICALL is incremented by 1 for each time that $F P$ requires a gradient evaluation. IC is incremented by 1 for each time that the one-dimensional minimization requires a function evaluation. The flow diagram appears in Fig. 1 and is discussed on pages 79 to 80.

The various N-dimensional buffers accomodate current and previous gradients, step sizes, search vectors, and a scratch buffer for matrix manipulations. Two $N \times N$ matrices are calculated and added to the previous $N \times N$ matrix H_{k-1} to obtain the current matrix H_{k}. This provides the two opportunities for convergence tests. Storage requirements have been kept to a minimum because all storage buffers must be furnished by the user with FP requiring only enough memory locations to perform multiplications, additions, etc.

Two essential inputs by the user are a function generator along with a gradient generator. Comparative values of $y(x)$ and $\nabla y(x)$ are thus made available to the program. In the current formulation, both of these operations are performed by the subroutine GRADY. The method of Golden Sections is used for one-dimensional minimization. This is mechanized in subroutine GOLDEN. Descriptions of the method of Golden Sections can be found in the aforementioned reference of Wilde and Beightler.

*Check for exit condition of convergence after N iterations.

Fig. 1. Flow Diagram of Variable Metrics Program FP.

Application to Inlet Bypass Door Servo

This particular example system is diagrammed on page 69. Referring to the diagram of this particular problem, the symbols all represent transformed functions of the complex frequency p :

$$
\begin{gathered}
P(p)=\frac{p+1010}{1010} \\
C(p)=x_{1} \frac{\left(p+x_{3}+j x_{2}\right)\left(p+x_{3}-j x_{2}\right)}{(p+4000)^{2}} \\
G(p)=\left(\frac{371.5}{p+46}\right) \frac{(p+80.29+j 172.2)(p+80.29-j 172.2)(p+173.16+j 332.62)}{(p+44.57+j 281.49)(p+44.57-j 281.49)(p+84.24+j 477.63)} \\
\frac{(p+173.16-j 332.62)(p+75.69+j 575.03)(p+75.69-j 575.03)}{(p+84.24-j 477.63)(p+130.2+j 738.6)(p+130.2-j 738.6)}
\end{gathered}
$$

$(p+82.8+j 946.39)(p+82.8-j 946.39)$
$(p+191.07+j 1083.28)(p+191.07-j 1083.28)$

The closed loop transfer function of the servomechanism is seen from the figure to be

$$
T(p)=\frac{G(p)}{1+G(p) \cdot P(p) \cdot C(p) \cdot D(p)}
$$

where the component transfer functions are given below:

$$
D(p)=\frac{\left(1.3073 \times 10^{20}\right)}{p(p+2000)(p+967.5)(p+1461+j 4009)(p+1461-j 4009)}
$$

Δw is the frequency spectrum of input additive noise, and Δx^{\prime} is the frequency content of the undelayed shock position to be regulated. G is the fixed inlet dynamics; P is the frequency relation between shock position and exit pressure; C is the compensator of the form

$$
K \frac{\left(p+p_{0}\right)\left(p+\bar{p}_{0}\right)}{(p+a)^{2}} ;
$$

and D gives the dynamics of the bypass door. All transfer functions are fixed except C, and the whole problem is the search for three controlling parameters, $K=x_{1}, P_{0}=x_{3}+j x_{2}$, and $\bar{P}_{0}=x_{3}-j x_{2}$, in order that

$$
Y \equiv \sum_{k=1}^{151}\left\{T(j 2 k)-\frac{371.5(j 2 \pi k)^{3}}{(j 2 \pi k+30)(j 2 \pi k+37150)}\right\}^{2}
$$

be a minimum. Computer results give satisfying verification of predictions.

Numerical Results

Firstly, the frequency response, which it is desired to match, is uniformly 40 db down or more over the range of frequencies between 1 and 251 cycles per second.

Secondly, a chart of results can be given below:

x_{1}	x_{2}	${ }^{x_{3}}$	y	Z	Stability
6×10^{-5}	248	142	13.9	0.4	Yes
1.0	248	142	13.9	0.5	Yes
1000	248	142	13.5	2.1	Yes
10024	86.1	778	8.2	4.1	Yes
100007	-192	2435	0.02	34.8	No
10^{6}	222	551.	0.004	37.0	?

The entries beneath the label Z stand for the minimum attenuation in $d b$ of the closed-loop frequency response over the range of frequencies from 1 to 121 cycles per second.

Low frequency sensitivity appears to decrease with increasing values of x_{1} in the formula

$$
c(p)=x_{1} \frac{\left(p+x_{3}\right)^{2}+x_{2}^{2}}{(p+4000)^{2}}
$$

However, previous studies have demonstrated that it is insufficient to merely have $C(p)=x_{1}$ and increase x_{1} in order to reduce low frequency response because instability occurs as it appears to do in the runs of the table.

Conclusions

This paper has demonstrated the application of a powerful optimization strategy for the case of cost functions, which can be written as the ratio of two polynomials. The application is the discovery of several combinations of acceptable parameter values for a controller, which stabilizes and minimizes the low frequency sensitivity of an Inlet Bypass Door Servo.

In reference to the schematic system diagram on page 69, suitable combinations of x_{1}, x_{2}, and x_{3} in

$$
c(p)=x_{1} \frac{\left(p+x_{3}+j x_{2}\right)\left(p+x_{3}-j x_{2}\right)}{(p+4000)^{2}}
$$

are $x_{1}=6 \times 10^{-5}, x_{2}=248, x_{3}=142$, and $x_{1}=10024, x_{2}=86.1$, $x_{3}=778$.

The value of the approach taken in this paper is that its success is independent of the particular numbers used to specify the component transfer functions, and it converges rapidly and reliably for lower degree problems while being simultaneously reliable at higher degrees.

References

[1] Wilde, D. J., and Beightler, C. S., Foundations of Optimiaation, Prentice Hall, New Jersey, 1967.
[2] Fletcher and Powell, "A Rapidly Convergent Descent Method for Minimization," Comp. J., 6, No. 2, 1963, pp. 163-168.
[3] Huelsman, L. P., "GOSPEL", NASA Contract NGL-03-002-136, University of Arizona, Sept. 1968.

1×p, mUF, Y, ICALL, IC, LixI, 1.)
FLFTCHFR-PONFLL MINIMILATLUN UF FUNCTION YFY(X) OF N VAKIABLFS X (I) wITH INITIAL FOINT XO UF CUNVEKOENT DEOUEINCE OF XFS L IS THE MAA DAUM NUMERR UF IrERATIUNS OF FP, M IS IME MAAIMUM NUMEEK OF IJENATIOINS FOK GULOEN。 L. M, AND N MJSTALL BE PUSITVE IVTEGEKS. CKIT IS THE CONVERGENCE CRITERION FOR THE SEQUENLE UF $X \neq S$.
FOK THF FOREGOING LNPUT, SUGROUTINE FP KETURWS AN ESIIAATE GINV OF THE INVERSE UF THE HESSJA'V MATKIX ANU THE MINIMUM VALUE Y UF Y(X), EVALUATE: AT IHE MINIMIM x.
ICALL COINIS THE NUMGER OF I IMES FP CALLS GRAUY (FOR GRADIEENTS).
IC COURTS THF VJMBER OF TIMES GOLDEN CALES GRADY IFORFUNCTION VALUEST.

THF REMAINING INDEDCKIBEG PAKAMETEKS AKE FUK INTERIVAL USE ONLY

OEL. $Y=C+O X$
QUELY=丁WDX (GACKWARU UIFFERENCF U)
UX=OINV*UOELY
UX=-GINVBDELYO (AT OPTIMUM)
() UNKNUWN

1. CHOOSE XU aRBITKARILY WITH LELYO=DELY (XO)
 $Y(X(1))=I N F Y(X(1, M U))$ OVER MU
2. PUT (NTNV(n) $=$ I (N)
3. CUMPUTE $A(M)=X(M-1)-M U W Q N V(M-1) * O E L Y(M-1)$ $Y(X(M))=T N F \quad Y(X(M,-m U)$

IHEN, GINV(N) aPPRUXIMATES WINV, ANU X(IN) ESTIMATES THE MINIMUM X.
$X(N)=X 0-Q I N V(N) W O E L O$
$X(N)=X \cap-S U M(M U(M)$ WQINV $(M-1)$ HUELY $(M-1)) \quad(M=1, \ldots, N)$
UIAENGIUN XO(N), DELYU(N), DELYN(N), XI(N), A(N), A(N, N), AN(N):
lOELX (N), OTNV (N, N), BUR (N), XP(N)
```
IONE=1
CALL MOVF(XP, XO, N, INIVE)
CAILL GKANY(XP, Y, DELYO, ICALL)
CAILL MIDFNT(QINV,N)
```

$003 K=1: 1$
CALL MINTON(UINV, N, N, DELYU, IONE, DELYN)

CALL MPLUSN (XP, DELYN, N, IONE, XI)

C

CAI_L CHANGE (DELYO, N; IUNE)
CALL MPLUSNTIULYN, UELYO, NG IONE, DELYOJ

ORE-GTMENSTUMAL MTNTMTZATIOT OF YEYTXT FY GOLDEN SECTION WTTA N-VARTARLES
$X(I)$. ENOPOTNTS XA, XZ UF SEARCH INTEKVAL, AND OPITMAL POINT XB UUTPUT
M IS TIE AUM.AEH UF TERATIUNS PEN SEARCTA.

IUNE = 1
$5=1.01 \times 033989$
$\frac{G 1=G-1 \cdot 0}{G 2=2 \cdot 0-15}$
CAI L MOVE (XG, XI, N, LONE)
CALL MOVF (x/, त2, NONE)
CAIL MOVE (XB, XG, N, IUNE)
CALL CHANGF(x89 N. TUNE)
CAIL MPLISN (X7, Xb, No LONE, X4)
(0) $1 \quad J=1, N$

CALL MPLISN(X6, X4, M, IONE, X3)
CAI_L GHAIIY (X3, YI, XB, IC)
CALL CHANGF (X4, N. IUTVE)
CALL MPLUSN (X7, X4, N, LONE, X5)
CAILL GWADY(XS, Y己, XB, IC)
CALL CHANGE (X4, N, IUNE)

$Y 2=Y(x>-G 2+1) x)$

$0031 \mathrm{~J}=1 . \mathrm{N}$
I $x_{4}(J)=G \$ x_{4}(J)$
IF (YI.LT.Y\#) GUTO 33

CALL MOVF (X3, X5, N, IONE)
CALL CFANNGFOX4, N- IUNET
CALL MPLUSN $(X 7, X 4, N$ I IUNE, $X 5)$
CALL CMANGE ($\times 4 \cdot \mathrm{~N}$: IUNE)
$Y 1=Y$?
CALL GRÃY(X5, YZ, Xb:,
GOTO 3
3 CALL MOVE (XT, X5, N, IONET
CALL MOVE (×5, $13, N$, IONE)
CALL MPLUSH (X6, X4, N9 TUNE, XS)
$Y 2=Y 1$
CALL GRATY(X3. YIG X69-ICT
CONTINUE
$x \equiv 1.77(2$. 1 (62)
DO 5 $1=1$, N
$\times 4$ (1) $=x^{6} \times 4$ (I)
CALL MPLUSN(X6, $\times 4$, N, IONE, XB)
RETURN
PREPARED UNOER NASA CONTRACI NGR-03-002-115
END

SUBTRUTINF GRAUYTK-YGOY IC)

1) IMENSION $\times(1)$ O UY (1)

$Y=n$
CALL MRERO(UY, 3.I)
$I C=I C+1$
2) $T=1$, 151.3
$I F=I$
$\mathrm{F}=\mathrm{y}$
$S=C M P L$ (10.0 .6 .29318531 *F)
CALL GF (IF.G)
CALL DF (TF, D)
CAIL FF (TF O)
CALL CF (TF, X, C)
CAT.L TF (IF. T)
$A=2 \ddot{C O} 56$
$B=1 \cdot n+C Q_{A}$
$Z=5 / H-1$
$\mathrm{DC}(1)=(75+x(3) 7$ क $2+x(2)$ समट) $7(5+4000.0)$ 反क
$D C(2)=2 . n * x(1) * x(2) /(5+4000.0) * * 2$

$C=A * G * C O N, J G(Z) / B * * 2$
D) 11 J=1, 3
$1 \quad D Y(J)=D Y(J)-2.0$ REAL $(C \backsim D C(J))$
$\gamma_{Y}=\mp$ CONJG(Z)
$Y=Y+7$
COMTINUE
RETURN
ENI)

SURKOUTIM GF゙(I.G)
COMrLtAG日
$\mathrm{F}=\mathrm{T}$
$\mu=(M P 1, x(0.0) 6.23318531 * F)$

$3 \quad 4((p+130.2) * * 2+738.64 * 2) *((\psi+191.07) 442+1083.28442))$
KETURN
ENI)

SH, ROUTINF BF(I. (1)
COULPA \therefore PP
 $1, *((P+3) 8.5) * * 2+1899 \cdot(0+\$ 2))$
RETURN
ENO

$\mathrm{F}=1$

$P=$ CMPL入 (n.n, $6 \cdot 28318531 * F)$
एp= $p+1010.0) / 10010.0$
RETURN
ENत

SU,ROUTAME CF(I.A.C)
DITENSION $\times(1)$
COTPEAC.P
$r=1$
ア=CMPL×(0.0. $6 \cdot 28316531$ F)
$C=x *((p+x(7)) * * 2+x(2) * * 2) /(p+4000.0) * * 2$
RETURIV
ENO

SOAROUTIFIFTFM.T)
COAPLEX T, P
$P=C M P L x\left(\eta, n, 6 \cdot 26318531^{* 2 F}\right)$
$1=311.5 \mathrm{kP/(p+30.0)} \mathrm{\%(p+37150.0)}$
RE TURN
ENヴ

