34 research outputs found

    Designing Functional Carriage of High-Speed Medical Train – Systematic Analysis and Evaluation of Tasks, Functions and Flow Routes

    Get PDF
    This paper proposes a functional carriage design and an evaluation index system to improve the operational efficiency of high-speed medical trains. Hierarchical task analysis and human-machine-environment analysis were applied to model the transfer task and the functional modules of the medical train. The functional module configuration was obtained by performing a correlation analysis between the task and function. The relationship between carriages was elucidated by analysing material, personnel and information flow, and an optimal grouping diagram was obtained. Based on this design method, an innovative 6-carriage grouping design scheme was proposed. A functional evaluation index system for the carriage design was constructed, and the 6-carriage design was compared with the conventional 8-carriage design to verify the usability of the design method. The results showed that the 6-carriage high-speed trains can be flexibly configured to suit the changing task environment and are generally better than the 8-carriage design. This study provides theoretical and methodological support for constructing efficient and rational functional carriages for high-speed medical trains

    Designing Functional Carriage of High-Speed Medical Train – Systematic Analysis and Evaluation of Tasks, Functions and Flow Routes

    Get PDF
    This paper proposes a functional carriage design and an evaluation index system to improve the operational efficiency of high-speed medical trains. Hierarchical task analysis and human-machine-environment analysis were applied to model the transfer task and the functional modules of the medical train. The functional module configuration was obtained by performing a correlation analysis between the task and function. The relationship between carriages was elucidated by analysing material, personnel and information flow, and an optimal grouping diagram was obtained. Based on this design method, an innovative 6-carriage grouping design scheme was proposed. A functional evaluation index system for the carriage design was constructed, and the 6-carriage design was compared with the conventional 8-carriage design to verify the usability of the design method. The results showed that the 6-carriage high-speed trains can be flexibly configured to suit the changing task environment and are generally better than the 8-carriage design. This study provides theoretical and methodological support for constructing efficient and rational functional carriages for high-speed medical trains

    Efficient intracerebral delivery of AAV5 vector encoding human ARSA in non-human primate

    No full text
    International audienceMetachromatic leukodystrophy (MLD) is a lethal neurodegenerative disease caused by a deficiency in the lysosomal arylsulfatase A (ARSA) enzyme leading to the accumulation of sulfatides in glial and neuronal cells. We previously demonstrated in ARSA-deficient mice that intracerebral injection of a serotype 5 adeno-associated vector (AAV) encoding human ARSA corrects the biochemical, neuropathological and behavioral abnormalities. However, before considering a potential clinical application, scaling-up issues should be addressed in large animals. Therefore, we performed intracerebral injection of the same AAV vector (total dose of 3.8 3 1011 or 1.9 3 1012 vector genome, three sites of injection in the right hemisphere, two deposits per site of injection) into three selected areas of the centrum semiovale white matter, or in the deep gray matter nuclei (caudate nucleus, putamen, thalamus) of six non-human primates to evaluate vector distribution, as well as expression and activity of human ARSA. The procedure was perfectly tolerated, without any adverse effect or change in neurobehavioral examination. AAV vector was detected in a brain volume of 12–15 cm3 that corresponded to 37–46% of the injected hemisphere. ARSA enzyme was expressed in multiple interconnected brain areas over a distance of 22–33 mm. ARSA activity was increased by 12–38% in a brain volume that corresponded to 50–65% of injected hemisphere. These data provide substantial evidence for potential benefits of brain gene therapy in patients with MLD
    corecore