38 research outputs found

    Assessing the dispersal and exchange of brachyuran larvae between regions of San Diego Bay, California and nearshore coastal habitats using elemental fingerprinting

    Get PDF
    Marine benthic invertebrate populations found in estuarine or coastal habitats often exchange larvae. However, the dynamics of larval exchange are poorly understood because of difficulties in (1) making synoptic assessments of horizontal and vertical larval distribution patterns over large areas for extended periods of time and (2) determining the origins of field-sampled larvae. This study examines how temporal changes in the vertical and horizontal distribution of crab larvae (i.e., Pachygrapsus crassipes and Lophopanopeus spp.) affect larval transport. Larval concentration and water velocity data were collected concurrently and were used to estimate larval exchange between regions of San Diego Bay (SDB) and between SDB and nearshore coastal waters. A larval fingerprinting technique was used to distinguish SDB and non-SDB spawned, stage I P. crassipes zoeae to quantify larval exchange between SDB and nearshore coastal waters. First order estimates of larval exchange over a tidal cycle between inner and outer regions of SDB and between the bay and nearshore coastal habitats corroborate a net transport of stage I P. crassipes zoeae from SDB as inferred from larval behavior. The estimated net larval exchange of Lophopanopeus spp. zoeae was into SDB, suggesting retention within the bay through larval development. Trace elemental fingerprinting of stage I P. crassipes zoeae revealed bi-directional exchange between SDB and the nearshore coastal environment when the predominant transport predicted from zoeal swimming behavior was out of San Diego Bay. Approximately 5% of stage I P. crassipes zoeae sampled in the mid region of SDB originated from outside SDB, while 26% of zoeae sampled at the entrance originated from outside SDB. Combined use of trace elemental fingerprinting and synoptic field sampling techniques will help improve our understanding of larval transport and ultimately the population dynamics of nearshore species

    Barnacle larvae in ice : survival, reproduction, and time to post settlement metamorphosis

    Get PDF
    Author Posting. © The Author(s), 2005. This is the author's version of the work. It is posted here by permission of American Society of Limnology and Oceanography for personal use, not for redistribution. The definitive version was published in Limnology and Oceanography 50 (2005): 1520-1528.Late stage larvae (cyprids) of the barnacle Semibalanus balanoides frequently encounter freezing conditions along the northwest Atlantic coast. S. balanoides cyprids survived for more than 4 weeks embedded in sea ice, and a significant fraction of larvae held in ice up to 2 weeks successfully settled and metamorphosed after thawing. Larvae that completed metamorphosis continued to develop and reproduce. In settlement experiments with cyprids of known age and where settled cyprids were removed every other day from the experimental containers, cyprids held in ice for 2 weeks settled and metamorphosed more than nonfrozen larvae. Mean time to metamorphosis was longer for frozen cyprids than for nonfrozen ones, and maximum time to metamorphosis was 38 d for cyprids held in sea ice for 2 weeks and 26 d for cyprids in nonfrozen treatments. Larval tolerance to freezing conditions greatly expands the environmental tolerance repertoire of marine invertebrates and may help explain the ecological success of this widespread intertidal species.This work was supported by the U.S. National Science Foundation (OCE-9986627 and OCE-0083976)

    Contrasting effects of substrate mobility on infaunal assemblages inhabiting two high-energy settings on Fieberling Guyot

    Get PDF
    The influence of seamount-intensified flows on the structure of infaunal assemblages was examined at two sand-covered sites located 2.3 km apart atop the summit plain of Fieberling Guyot (32°27.6′N 127° 48.0′W). Both sites experience strong, tidal bottom currents with flows exceeding 20 cm/s on a daily basis (4 mab). Estimates of shear velocity (u*) did not differ significantly between the two sites. However, differences in sediment composition and density produced different sediment transport regimes at the two sites. At Sea Pen Rim (SPR), located on the NW perimeter (635 m), sedimentary particles were composed primarily of basaltic sands that experienced negligible transport during the study period. At White Sand Swale (WSS, 580 m), a narrow valley enclosed on three sides by basalt outcrops, sediments were composed almost entirely of foraminiferal sands that moved daily. Sediment organic content and microbial abundances were similar at the two sites. Infauna (\u3e300 μm) had higher densities at WSS (1870/m2) than SPR (1489/m2), but lower expected species richness. Although the 2 sites shared nearly 50% of identified species, peracarid crustaceans, echinoderms, sponges, and bryozoans were proportionally more important in the stable substrates of SPR, while turbellarians, bivalves, and aplacophorans were better represented in the shifting sands of WSS. The infauna of WSS lived deeper in the sediment column (\u3e50% below 2 cm) than that of SPR (\u3e 50% in the upper 1 cm), at least partly because the majority (83%) at WSS were subsurface burrowers with motile lifestyles. Tube-building and epifaunal lifestyles were more common at SPR than WSS, as were surface-deposit and filter-feeding modes. Fences and weirs were deployed at the study sites for 6.5-wk and 6-mo periods to manipulate bottom stress. Changes in faunal patterns within weirs at WSS reinforced our conjecture that contrasting sediment transport regimes explain between-site differences in community structure. Fence effects varied with deployment period and site. Topographic features on Fieberling Guyot produce heterogeneous sedimentary settings characterized by different transport regimes. Our results suggest that substrate mobility exerts primary control over infaunal community structure at the two high-energy sites

    Environmentally mediated trends in otolith composition of juvenile Atlantic cod (Gadus morhua)

    Get PDF
    Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here by permission of Oxford University Press for personal use, not for redistribution. The definitive version was published in ICES Journal of Marine Science 72 (2015): 2350-2363, doi: 10.1093/icesjms/fsv070.We evaluated the influence of environmental exposure of juvenile Atlantic cod (Gadus morua) to inform interpretations of natal origins and movement patterns using otolith geochemistry. Laboratory rearing experiments were conducted with a variety of temperature (~ 5, 8.5 and 12 °C) and salinity (~ 25, 28.5 and 32 PSU) combinations. We measured magnesium (Mg), manganese (Mn), strontium (Sr) and barium (Ba), expressed as a ratio to calcium (Ca), using laser ablation inductively coupled plasma mass spectrometry (ICP-MS), and stable carbon (δ13C) and oxygen (δ18O) isotopes using isotope ratio monitoring mass spectrometry. Temperature and salinity significantly affected all elements and isotopes measured, with the exception of salinity on Mg:Ca. We detected significant interactions among temperature and salinity for Mn:Ca and Ba:Ca partition coefficients (ratio of otolith chemistry to water chemistry), with significant temperature effects only detected in the 32 and 28.5 PSU salinity treatments. Similarly, we detected a significant interaction between temperature and salinity in incorporation of δ13C, with a significant temperature effect except at intermediate salinity. These results support the contention that environmental mediation of otolith composition varies among species, thus limiting the ability of generalized models to infer life history patterns from chemistry. Our results provide essential baseline information detailing environmental influence on juvenile Atlantic cod otolith composition, punctuating the importance of laboratory validations to translate species-specific otolith composition when inferring in situ life histories and movements.Research funding and support was provided by a Natural Sciences and Engineering Research Council of Canada (NSERC) Strategic Grant on Connectivity in Marine Fishes. R. Stanley was supported by an NSERC Postgraduate Scholarship and a Research and Development Corporation of Newfoundland (RDC) student fellowship.2016-04-2

    Genomic evidence of past and future climate-linked loss in a migratory Arctic fish

    Get PDF
    Acknowledgements We thank staff of the Newfoundland DFO Salmonids section, Parks Canada, the Nunatsiavut Government, the NunatuKavut Community Council, the Sivunivut Inuit Community Corporation, the Innu Nation, the Labrador Hunting and Fishing Association and fishers for their support, participation and tissue collections and the staff of the Aquatic Biotechnology Lab at the Bedford Institute of Oceanography for DNA extractions. This study was supported by the Ocean Frontier Institute, a Genomics Research and Development Initiative (GRDI) Grant, a Natural Sciences and Engineering Research Council (NSERC) Discovery Grant and Strategic Project Grant to I.R.B., the Weston Family Award for research at the Torngat Mountains Base Camp and an Atlantic Canada Opportunities Agency and Department of Tourism, Culture, Industry and Innovation grant allocated to the Labrador Institute. Author Correction: Layton, K.K.S., Snelgrove, P.V.R., Dempson, J.B. et al. Author Correction: Genomic evidence of past and future climate-linked loss in a migratory Arctic fish. Nat. Clim. Chang. 11, 551 (2021). https://doi.org/10.1038/s41558-021-01023-8Peer reviewedPostprin

    Temporal dynamics of genetic clines of invasive European green crab (Carcinus maenas) in eastern North America

    Get PDF
    Evolutionary Applications published by John Wiley & Sons Ltd. Reproduced with the permission of the Minister of Fisheries and Oceans Canada. Two genetically distinct lineages of European green crabs (Carcinus maenas) were independently introduced to eastern North America, the first in the early 19th century and the second in the late 20th century. These lineages first came into secondary contact in southeastern Nova Scotia, Canada (NS), where they hybridized, producing latitudinal genetic clines. Previous studies have documented a persistent southward shift in the clines of different marker types, consistent with existing dispersal and recruitment pathways. We evaluated current clinal structure by quantifying the distribution of lineages and fine-scale hybridization patterns across the eastern North American range (25 locations, ~39 to 49°N) using informative single nucleotide polymorphisms (SNPs; n = 96). In addition, temporal changes in the genetic clines were evaluated using mitochondrial DNA and microsatellite loci (n = 9–11) over a 15-year period (2000–2015). Clinal structure was consistent with prior work demonstrating the existence of both northern and southern lineages with a hybrid zone occurring between southern New Brunswick (NB) and southern NS. Extensive later generation hybrids were detected in this region and in southeastern Newfoundland. Temporal genetic analysis confirmed the southward progression of clines over time; however, the rate of this progression was slower than predicted by forecasting models, and current clines for all marker types deviated significantly from these predictions. Our results suggest that neutral and selective processes contribute to cline dynamics, and ultimately, highlight how selection, hybridization, and dispersal can collectively influence invasion success

    Mussel larval responses to turbulence are unaltered by larvalage or light condition

    No full text
    Larval responses to hydromechanical cues potentially have important effects on larval dispersal and settlement. This study examined the behavior of mussel larvae (Mytilus edulis) in laboratory-generated turbulence representative of nearshore currents. We video recorded the behavior of early- and late-stage veligers in a grid-stirred tank at five turbulence levels under light and dark conditions. Water velocities and kinetic energy dissipation rates were measured using particle image velocimetry and acoustic Doppler velocimetry. We characterized the vertical velocity distributions for sinking, hovering, and swimming modes in still water and calculated the average larval behavioral velocity in turbulence. In still water, young larvae had more positive (upward) velocities than old larvae, and both stages had more positive velocities in light than in dark. In turbulence, the mean larval vertical velocity varied from positive at low dissipation rates to negative at dissipation rates above a threshold of 8.3 £ 1022 cm2 s23. At this threshold, the Kolmogorov length scale (h ¼ 590mm) was two to three times the mean larval shell lengths (171–256mm), implying that turbulence is detectable even by larvae that are smaller than the smallest eddies. Responses to turbulence were unaffected by larval age or light conditions and contributed substantial behavioral variation. By sinking in strong turbulence, mussel larvae could increase their flux to the bed in energetic coastal flows, particularly over rough substrates like mussel beds. The response to turbulence by early-stage larvae will also affect their dispersal and may help larvae remain near coastal populations.Peer reviewedOriginally published in Limnology and Oceanography: Fluids & Environments (2011) and available via this link: http://lofe.dukejournals.org/content/1/120.full.pdfCopyright 2011 by the Association for the Sciences of Limnology and Oceanography, Inc

    Swimming performance of subarctic Calanus spp. facing downward currents

    Get PDF
    Calanoid copepods dominate mesozooplankton communities in temperate and Nordic seas. The ability of copepods to remain and feed in productive surface waters depends on their ability to overcome downward flows. In this study, we assessed the swimming performance of subarctic Calanus spp. and tested how the copepods can retain their vertical position in a representative range of downward currents (between 0 and 5.4 cm s-1) simulated in a downwelling flume. Mean vertical and horizontal copepod swimming velocities and accelerations, movement periodicity and trajectory complexity were obtained by tracking individual trajectories in the field of view of 2 cameras. Copepod swimming velocity increased with increasing downward flow and matched downward flows up to 2 cm s-1. Beyond 2 cm s-1, animals were still able to significantly reduce their sinking rates, but their motions changed. Trajectories became simpler, swimming velocities changed on shorter time scales and instantaneous acceleration increased. These results are consistent with predictions of balancing depth retention against encounter rates with food and predators. Frequency distributions of vertical swimming speeds were mostly unimodal, with entire experimental populations responding in the same way. Coordination of movements and the ability to resist moderate downwelling flows can result in the accumulation of copepods in large surface swarms as observed in the field

    Temporal dynamics of genetic clines of invasive European green crab (Carcinus maenas) in eastern North America

    No full text
    Two genetically distinct lineages of European green crabs (Carcinus maenas) were in- dependently introduced to eastern North America, the first in the early 19th century and the second in the late 20th century. These lineages first came into secondary contact in southeastern Nova Scotia, Canada (NS), where they hybridized, producing latitudinal genetic clines. Previous studies have documented a persistent southward shift in the clines of different marker types, consistent with existing dispersal and recruitment pathways. We evaluated current clinal structure by quantifying the dis- tribution of lineages and fine-scale hybridization patterns across the eastern North American range (25 locations, ~39 to 49°N) using informative single nucleotide poly- morphisms (SNPs; n = 96). In addition, temporal changes in the genetic clines were evaluated using mitochondrial DNA and microsatellite loci (n = 9--11) over a 15-year period (2000--2015). Clinal structure was consistent with prior work demonstrating the existence of both northern and southern lineages with a hybrid zone occurring between southern New Brunswick (NB) and southern NS. Extensive later generation hybrids were detected in this region and in southeastern Newfoundland. Temporal genetic analysis confirmed the southward progression of clines over time; however, the rate of this progression was slower than predicted by forecasting models, and current clines for all marker types deviated significantly from these predictions. Our results suggest that neutral and selective processes contribute to cline dynamics, and ultimately, highlight how selection, hybridization, and dispersal can collectively influ- ence invasion success

    Data from: Genomic evidence of hybridization between two independent invasions of European green crab (Carcinus maenas) in the Northwest Atlantic

    No full text
    Invasive species have been associated with significant negative impacts in their introduced range often outcompeting native species, yet the long-term evolutionary dynamics of biological invasions are not well understood. Hybridization, either among waves of invasion or between native and introduced populations, could alter the ecological and evolutionary impacts of invasions yet has rarely been studied in marine invasive species. The European green crab (Carcinus maenas) invaded eastern North America twice from northern and southern locations in its native range. Here we examine the frequency of hybridization among these two distinct invasions at locations from New Jersey, USA to Newfoundland, Canada using restriction-site associated DNA sequencing (RAD-seq), microsatellite loci, and COI mtDNA sequences. We used Bayesian clustering and hybrid assignment analyses to investigate hybridization between the northern and southern populations. Of the samples analyzed, six locations contained at least one hybrid individual, while two locations were characterized by extensive hybridization, with 95% of individuals collected from Placentia Bay, Newfoundland being hybrids (mostly F2), and 90% of individuals from Kejimkujik, Nova Scotia being classified as hybrids, mostly backcrosses to the northern ecotype. The presence of both F2 hybrids and backcrossed individuals suggests that these hybrids are viable and introgression is occurring between invasions. Our results provide insight into the demographic and evolutionary consequences of hybridization between independent invasions, and will inform the management of green crabs in eastern North America
    corecore