147 research outputs found

    Heterochronic Developmental Shifts Underlying Squamate Cerebellar Diversity Unveil the Key Features of Amniote Cerebellogenesis

    Get PDF
    Despite a remarkable conservation of architecture and function, the cerebellum of vertebrates shows extensive variation in morphology, size, and foliation pattern. These features make this brain subdivision a powerful model to investigate the evolutionary developmental mechanisms underlying neuroanatomical complexity both within and between anamniote and amniote species. Here, we fill a major evolutionary gap by characterizing the developing cerebellum in two non-avian reptile species—bearded dragon lizard and African house snake—representative of extreme cerebellar morphologies and neuronal arrangement patterns found in squamates. Our data suggest that developmental strategies regarded as exclusive hallmark of birds and mammals, including transit amplification in an external granule layer (EGL) and Sonic hedgehog expression by underlying Purkinje cells (PCs), contribute to squamate cerebellogenesis independently from foliation pattern. Furthermore, direct comparison of our models suggests the key importance of spatiotemporal patterning and dynamic interaction between granule cells and PCs in defining cortical organization. Especially, the observed heterochronic shifts in early cerebellogenesis events, including upper rhombic lip progenitor activity and EGL maintenance, are strongly expected to affect the dynamics of molecular interaction between neuronal cell types in snakes. Altogether, these findings help clarifying some of the morphogenetic and molecular underpinnings of amniote cerebellar corticogenesis, but also suggest new potential molecular mechanisms underlying cerebellar complexity in squamates. Furthermore, squamate models analyzed here are revealed as key animal models to further understand mechanisms of brain organization.Peer reviewe

    Functions of peroxisome proliferator-activated receptors (PPAR) in skin homeostasis

    Get PDF
    The peroxisome proliferator-activated receptors (PPAR) are ligand-activated transcription factors that belong to the nuclear hormone receptor family. Three isotypes (PPARα, PPARβ or δ, and PPARγ) with distinct tissue distributions and cellular functions have been found in vertebrates. All three PPAR isotypes are expressed in rodent and human skin. They were initially investigated for a possible function in the establishment of the permeability barrier in skin because of their known function in lipid metabolism in other cell types. In vitro studies using specific PPAR agonists and in vivo gene disruption approaches in mice indeed suggest an important contribution of PPARα in the formation of the epidermal barrier and in sebocyte differentiation. The PPARγ isotype plays a role in stimulating sebocyte development and lipogenesis, but does not appear to contribute to epidermal tissue differentiation. The third isotype, PPARβ, regulates the late stages of sebaceous cell differentiation, and is the most effective isotype in stimulating lipid production in these cells, both in rodents and in humans. In addition, PPARβ activation has pro-differentiating effects in kera-tinocytes under normal and inflammatory conditions. Finally, preliminary studies also point to a potential role of PPAR in hair follicle growth and in melanocyte differentiation. By their diverse biological effects on cell proliferation and differentiation in the skin, PPAR agonists or antagonists may offer interesting oppotunities for the treatment of various skin disorders characterized by inflammation, cell hyperproliferation, and aberrant differentiatio

    Functions of peroxisome proliferator-activated receptors (PPAR) in skin homeostasis.

    Get PDF
    The peroxisome proliferator-activated receptors (PPAR) are ligand-activated transcription factors that belong to the nuclear hormone receptor family. Three isotypes (PPAR alpha, PPAR beta or delta, and PPAR gamma) with distinct tissue distributions and cellular functions have been found in vertebrates. All three PPAR isotypes are expressed in rodent and human skin. They were initially investigated for a possible function in the establishment of the permeability barrier in skin because of their known function in lipid metabolism in other cell types. In vitro studies using specific PPAR agonists and in vivo gene disruption approaches in mice indeed suggest an important contribution of PPAR alpha in the formation of the epidermal barrier and in sebocyte differentiation. The PPAR gamma isotype plays a role in stimulating sebocyte development and lipogenesis, but does not appear to contribute to epidermal tissue differentiation. The third isotype, PPAR beta, regulates the late stages of sebaceous cell differentiation, and is the most effective isotype in stimulating lipid production in these cells, both in rodents and in humans. In addition, PPAR beta activation has pro-differentiating effects in keratinocytes under normal and inflammatory conditions. Finally, preliminary studies also point to a potential role of PPAR in hair follicle growth and in melanocyte differentiation. By their diverse biological effects on cell proliferation and differentiation in the skin, PPAR agonists or antagonists may offer interesting opportunities for the treatment of various skin disorders characterized by inflammation, cell hyperproliferation, and aberrant differentiation

    Additive and global functions of HoxA cluster genes in mesoderm derivatives

    Get PDF
    Hox genes encode transcription factors that play a central role in the specification of regional identities along the anterior to posterior body axis. In the developing mouse embryo, Hox genes from all four genomic clusters are involved in range of developmental processes, including the patterning of skeletal structures and the formation of several organs. However, the functional redundancy observed either between paralogous genes, or among neighboring genes from the same cluster, has hampered functional analyses, in particular when synergistic, cluster-specific functions are considered. Here, we report that mutant mice lacking the entire HoxA cluster in mesodermal lineages display the expected spectrum of postnatal respiratory, cardiac and urogenital defects, previously reported for single gene mutations. Likewise, mild phenotypes are observed in both appendicular and axial skeleton. However, a striking effect was uncovered in the hematopoietic system, much stronger than that seen for Hoxa9 inactivation alone, which involves stem cells (HSCs) as well as the erythroid lineage, indicating that several Hoxa genes are necessary for normal hematopoiesis to occur. Finally, the combined deletions of Hoxa and Hoxd genes reveal abnormalities in axial elongation as well as skin morphogenesis that are likely the results of defects in epithelial-mesenchymal interactions

    Changes in Hox genes' structure and function during the evolution of the squamate body plan

    Get PDF
    Hox genes are central to the specification of structures along the anterior-posterior body axis, and modifications in their expression have paralleled the emergence of diversity in vertebrate body plans. Here we describe the genomic organization of Hox clusters in different reptiles and show that squamates have accumulated unusually large numbers of transposable elements at these loci, reflecting extensive genomic rearrangements of coding and non-coding regulatory regions. Comparative expression analyses between two species showing different axial skeletons, the corn snake and the whiptail lizard, revealed major alterations in Hox13 and Hox10 expression features during snake somitogenesis, in line with the expansion of both caudal and thoracic regions. Variations in both protein sequences and regulatory modalities of posterior Hox genes suggest how this genetic system has dealt with its intrinsic collinear constraint to accompany the substantial morphological radiation observed in this group

    Shared and differential features of Robo3 expression pattern in amniotes

    Get PDF
    In Bilaterians, commissural neurons project their axons across the midline of the nervous system to target neurons on the opposite side. In mammals, midline crossing at the level of the hindbrain and spinal cord requires the Robo3 receptor which is transiently expressed by all commissural neurons. Unlike other Robo receptors, mammalian Robo3 receptors do not bind Slit ligands and promote midline crossing. Surprisingly, not much is known about Robo3 distribution and mechanism of action in other vertebrate species. Here, we have use whole-mount immunostaining, tissue clearing and light-sheet fluorescent microscopy to study Robo3 expression pattern in multiple embryonic tissue from diverse representatives of amniotes at distinct stages, including squamate (African house snake), birds (chicken, duck, pigeon, ostrich, emu and zebra finch), early postnatal marsupial mammals (fat-tailed dunnart), and eutherian mammals (mouse and human). The analysis of this rich and unique repertoire of amniote specimen reveals conserved features of Robo3 expression in midbrain, hindbrain and spinal cord commissural circuits, which together with subtle but meaningful modifications could account for species-specific evolution of sensory-motor and cognitive capacities. Our results also highlight important differences of precerebellar nuclei development across amniotes. This article is protected by copyright. All rights reserved

    Hoxa cluster genes determine the proliferative activity of adult mouse hematopoietic stem and progenitor cells

    Get PDF
    Determination of defined roles for endogenous homeobox (Hox) genes in adult hematopoietic stem and progenitor cell (HSPC) activity has been hampered by a combination of embryonic defects and functional redundancy. Here we show that conditional homozygous deletion of the Hoxa cluster (Hoxa−/−) results in a marked reduction of adult HSPC activity, both in vitro and in vivo. Specifically, proliferation of Hoxa−/− HSPCs is reduced compared with wild-type (WT) cells in vitro and they are less competitive in vivo. Notably, the loss of Hoxa genes had little impact on HSPC differentiation. Comparative RNA sequencing analyses of Hoxa−/− and WT hematopoietic stem cells (CD150+/CD48−/Lineage−/c-kit+/Sca-1+) identified a large number of differentially expressed genes, three of which (Nr4a3, Col1a1, and Hnf4a) showed >10-fold reduced levels. Engineered overexpression of Hoxa9 in Hoxa−/− HSPCs resulted in partial phenotypic rescue in vivo with associated recovery in expression of a large proportion of deregulated genes. Together, these results provide definitive evidence linking Hoxa gene expression to proliferation of adult HSPCs

    Comparative analyses of vertebrate posterior HoxD clusters reveal atypical cluster architecture in the caecilian Typhlonectes natans

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The posterior genes of the <it>HoxD </it>cluster play a crucial role in the patterning of the tetrapod limb. This region is under the control of a global, long-range enhancer that is present in all vertebrates. Variation in limb types, as is the case in amphibians, can probably not only be attributed to variation in <it>Hox </it>genes, but is likely to be the product of differences in gene regulation. With a collection of vertebrate genome sequences available today, we used a comparative genomics approach to study the posterior <it>HoxD </it>cluster of amphibians. A frog and a caecilian were included in the study to compare coding sequences as well as to determine the gain and loss of putative regulatory sequences.</p> <p>Results</p> <p>We sequenced the posterior end of the <it>HoxD </it>cluster of a caecilian and performed comparative analyses of this region using <it>HoxD </it>clusters of other vertebrates. We determined the presence of conserved non-coding sequences and traced gains and losses of these footprints during vertebrate evolution, with particular focus on amphibians. We found that the caecilian <it>HoxD </it>cluster is almost three times larger than its mammalian counterpart. This enlargement is accompanied with the loss of one gene and the accumulation of repeats in that area. A similar phenomenon was observed in the coelacanth, where a different gene was lost and expansion of the area where the gene was lost has occurred. At least one phylogenetic footprint present in all vertebrates was lost in amphibians. This conserved region is a known regulatory element and functions as a boundary element in neural tissue to prevent expression of <it>Hoxd </it>genes.</p> <p>Conclusion</p> <p>The posterior part of the <it>HoxD </it>cluster of <it>Typhlonectes natans </it>is among the largest known today. The loss of <it>Hoxd-12 </it>and the expansion of the intergenic region may exert an influence on the limb enhancer, by having to bypass a distance seven times that of regular <it>HoxD </it>clusters. Whether or not there is a correlation with the loss of limbs remains to be investigated. These results, together with data on other vertebrates show that the tetrapod <it>Hox </it>clusters are more variable than previously thought.</p

    A general scenario of Hox gene inventory variation among major sarcopterygian lineages

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>H</it>ox genes are known to play a key role in shaping the body plan of metazoans. Evolutionary dynamics of these genes is therefore essential in explaining patterns of evolutionary diversity. Among extant sarcopterygians comprising both lobe-finned fishes and tetrapods, our knowledge of the <it>Hox </it>genes and clusters has largely been restricted in several model organisms such as frogs, birds and mammals. Some evolutionary gaps still exist, especially for those groups with derived body morphology or occupying key positions on the tree of life, hindering our understanding of how <it>Hox </it>gene inventory varied along the sarcopterygian lineage.</p> <p>Results</p> <p>We determined the <it>Hox </it>gene inventory for six sarcopterygian groups: lungfishes, caecilians, salamanders, snakes, turtles and crocodiles by comprehensive PCR survey and genome walking. Variable <it>Hox </it>genes in each of the six sarcopterygian group representatives, compared to the human <it>Hox </it>gene inventory, were further validated for their presence/absence by PCR survey in a number of related species representing a broad evolutionary coverage of the group. Turtles, crocodiles, birds and placental mammals possess the same 39 <it>Hox </it>genes. <it>HoxD12 </it>is absent in snakes, amphibians and probably lungfishes. <it>HoxB13 </it>is lost in frogs and caecilians. Lobe-finned fishes, amphibians and squamate reptiles possess <it>HoxC3</it>. <it>HoxC1 </it>is only present in caecilians and lobe-finned fishes. Similar to coelacanths, lungfishes also possess <it>HoxA14</it>, which is only found in lobe-finned fishes to date. Our <it>Hox </it>gene variation data favor the lungfish-tetrapod, turtle-archosaur and frog-salamander relationships and imply that the loss of <it>HoxD12 </it>is not directly related to digit reduction.</p> <p>Conclusions</p> <p>Our newly determined <it>Hox </it>inventory data provide a more complete scenario for evolutionary dynamics of <it>Hox </it>genes along the sarcopterygian lineage. Limbless, worm-like caecilians and snakes possess similar <it>Hox </it>gene inventories to animals with less derived body morphology, suggesting changes to their body morphology are likely due to other modifications rather than changes to <it>Hox </it>gene numbers. Furthermore, our results provide basis for future sequencing of the entire <it>Hox </it>clusters of these animals.</p

    Molecular evolution of HoxA13 and the multiple origins of limbless morphologies in amphibians and reptiles

    Get PDF
    Developmental processes and their results, morphological characters, are inherited through transmission of genes regulating development. While there is ample evidence that cis-regulatory elements tend to be modular, with sequence segments dedicated to different roles, the situation for proteins is less clear, being particularly complex for transcription factors with multiple functions. Some motifs mediating protein-protein interactions may be exclusive to particular developmental roles, but it is also possible that motifs are mostly shared among different processes. Here we focus on HoxA13, a protein essential for limb development. We asked whether the HoxA13 amino acid sequence evolved similarly in three limbless clades: Gymnophiona, Amphisbaenia and Serpentes. We explored variation in ω (dN/dS) using a maximum-likelihood framework and HoxA13sequences from 47 species. Comparisons of evolutionary models provided low ω global values and no evidence that HoxA13 experienced relaxed selection in limbless clades. Branch-site models failed to detect evidence for positive selection acting on any site along branches of Amphisbaena and Gymnophiona, while three sites were identified in Serpentes. Examination of alignments did not reveal consistent sequence differences between limbed and limbless species. We conclude that HoxA13 has no modules exclusive to limb development, which may be explained by its involvement in multiple developmental processes
    corecore