68 research outputs found

    Origin of craters on Phoebe: comparison with Cassini's data

    Get PDF
    Phoebe is one of the irregular satellites of Saturn; the images taken by Cassini-Huygens spacecraft allowed us to analyze its surface and the craters on it. We study the craters on Phoebe produced by Centaur objects from the Scattered Disk (SD) and plutinos escaped from the 3:2 mean motion resonance with Neptune and compare our results with the observations by Cassini. We use previous simulations on trans-Neptunian Objects and a method that allows us to obtain the number of craters and the cratering rate on Phoebe. We obtain the number of craters and the greatest crater on Phoebe produced by Centaurs in the present configuration of the Solar System. Moreover, we obtain a present normalized rate of encounters of Centaurs with Saturn of F˙=7.1×1011\dot F = 7.1 \times 10^{-11} per year, from which we can infer the current cratering rate on Phoebe for each crater diameter. Our study and the comparison with the observations suggest that the main crater features on Phoebe are unlikely to have been produced in the present configuration of the Solar System and that they must have been acquired when the SD were depleted in the early Solar System. If this is what happened and the craters were produced when Phoebe was a satellite of Saturn, then it had to be captured, very early in the evolution of the Solar System.Comment: Accepted for publication in Astronomy & Astrophysic

    Dynamical evolution of escaped plutinos, another source of Centaurs

    Get PDF
    It was shown in previous works the existence of weakly chaotic orbits in the plutino population that diffuse very slowly. These orbits correspond to long-term plutino escapers and then represent the plutinos that are escaping from the resonance at present. In this paper we perform numerical simulations in order to explore the dynamical evolution of plutinos recently escaped from the resonance. The numerical simulations were divided in two parts. In the first one we evolved 20,000 test particles in the resonance in order to detect and select the long-term escapers. In the second one, we numerically integrate the selected escaped plutinos in order to study their dynamical post escaped behavior. Our main results include the characterization of the routes of escape of plutinos and their evolution in the Centaur zone. We obtained a present rate of escape of plutinos between 1 and 10 every 10 years. The escaped plutinos have a mean lifetime in the Centaur zone of 108 Myr and their contribution to the Centaur population would be a fraction of less than 6 % of the total Centaur population. In this way, escaped plutinos would be a secondary source of Centaurs.Comment: Accepted for publication in A&

    Synthesis and evaluation of thymol-based synthetic derivatives as dual-action inhibitors against different strains of h. pylori and AGS cell line

    Get PDF
    Following a similar approach on carvacrol-based derivatives, we investigated the synthesis and the microbiological screening against eight strains of H. pylori, and the cytotoxic activity against human gastric adenocarcinoma (AGS) cells of a new series of ether compounds based on the structure of thymol. Structural analysis comprehended elemental analysis and 1H/13C/19F NMR spectra. The analysis of structure-activity relationships within this molecular library of 38 structurally-related compounds reported that some chemical modifications of the OH group of thymol led to broad-spectrum growth inhibition on all isolates. Preferred substitutions were benzyl groups compared to alkyl chains, and the specific presence of functional groups at para position of the benzyl moiety such as 4-CN and 4-Ph endowed the most anti-H. pylori activity toward all the strains with minimum inhibitory concentration (MIC) values up to 4 µg/mL. Poly-substitution on the benzyl ring was not essential. Moreover, several compounds characterized by the lowest minimum inhibitory concentration/minimum bactericidal concentration (MIC/MBC) values against H. pylori were also tested in order to verify a cytotoxic effect against AGS cells with respect to 5-fluorouracil and carvacrol. Three derivatives can be considered as new lead compounds alternative to current therapy to manage H. pylori infection, preventing the occurrence of severe gastric diseases. The present work confirms the possibility to use natural compounds as templates for the medicinal semi-synthesis

    Impactor flux and cratering on Ceres and Vesta: Implications for the early Solar System

    Get PDF
    We study the impactor flux and cratering on Ceres and Vesta caused by the collisional and dynamical evolution of the asteroid Main Belt. We develop a statistical code based on a well-tested model for the simultaneous evolution of the Main Belt and NEA size distributions. This code includes catastrophic collisions and noncollisional removal processes such as the Yarkovsky effect and the orbital resonances. The model assumes that the dynamical depletion of the early Main Belt was very strong, and owing to that, most Main Belt comminution occurred when its dynamical structure was similar to the present one. Our results indicate that the number of D > 1 km Main Belt asteroids striking Ceres and Vesta over the Solar System history are approximately 4 600 and 1 100 respectively. The largest Main Belt asteroids expected to have impacted Ceres and Vesta had diameters of 71.7 km and 21.1 km. The number of D > 0.1 km craters on Ceres is \sim 3.4 \times 10^8 and 6.2 \times 10^7 on Vesta. The number of craters with D > 100 km are 47 on Ceres and 8 on Vesta. Our study indicates that the D = 460 km crater observed on Vesta had to be formed by the impact of a D \sim 66.2 km projectile, which has a probability of occurr \sim 30% over the Solar System history. If significant discrepancies between our results about the cratering on Ceres and Vesta and data obtained from the Dawn Mission were found, they should be linked to a higher degree of collisional evolution during the early Main Belt and/or the existence of the late heavy bombardment. An increase in the collisional activity in the early phase may be provided for an initial configuration of the giant planets consistent with, for example, the Nice model. From this, the Dawn Mission would be able to give us clues about the initial configuration of the early Solar System and its subsequent dynamical evolution.Comment: Accepted for publication in Astronomy and Astrophysic

    Laser Pressure Catapulting (LPC): Optimization LPC-System and Genotyping of Colorectal Carcinomas

    Get PDF
    Genotype analysis is becoming more and more useful in clinical practice, since specific mutations in tumors often correlate with prognosis and/or therapeutic response. Unfortunately, current molecular analytical techniques often require time-consuming and costly steps of analysis, thus making their routine clinical use difficult. Moreover, one of the most difficult problems arising during tumor research is that of their cell heterogeneity, which depends on their clear molecular heterogeneity. SSCP analysis discriminates by means of aberrant electrophoresis migration bands, mutated alleles which may represent as little as 15-20% of their total number. Nevertheless, in order to identify by sequencing the type of alteration revealed by this technique, only the mutated allele must be isolated. The advent of laser microdissection is a procedure which easily solves these problems of accuracy, costs, and time. The aims of this study were to perfect the system of laser pressure catapulting (LPC) laser microdissection for the assessment of the mutational status of p53 and k-ras genes in a consecutive series of 67 patients with colorectal carcinomas (CRC), in order to compare this technique with that involving hand-dissection and to demonstrate that since the LPC system guarantees more accurate biomolecular analyses, it should become part of clinical routine in this field. The LPC-system was perfected with the use of mineral oil and the LPC-membrane. To compare the techniques of hand- and LPC-microdissection, alcohol-fixed, paraffin-embedded tissue from 67 cases of CRC were both hand- and laser-microdissected. In either case, dissected samples were analyzed by SSCP/sequencing and direct sequencing for k-ras and p53 gene mutations. LPC-microdissection made it possible to pick up mutations by direct sequencing or SSCP/sequencing, whereas hand-microdissection mutations were identified only by means of SSCP followed by sequencing; direct sequencing did not reveal any mutation. In the 67 patients examined by either method, 36% (24/67) showed p53 mutations, 32 of which identified. Seventy-eight percent (25/32) were found in the conserved areas of the gene, while 12% (4/32) were in the L2 loop, 50% (16/32) were in the L3 loop, and 12% (4/32) in the LSH motif of the protein. Moreover, of the 67 cases examined, 40% (27/67) showed mutations in k-ras, with a total of 29 mutations identified. Of these, 14 (48%) were found in codon 12 and 15 (52%) in codon 13. The modifications which we brought to the LPC system led to a vast improvement of the technique, making it an ideal substitution for hand-microdissection and guaranteeing a considerable number of advantages regarding facility, accuracy, time, and cost. Furthermore, the data obtained from the mutational analyses performed confirm that the LPC system is more efficient and rapid than hand-microdissection for acquiring useful information regarding molecular profile and can therefore be used with success in clinical routine

    Rings in the Solar System: a short review

    Full text link
    Rings are ubiquitous around giant planets in our Solar System. They evolve jointly with the nearby satellite system. They could form either during the giant planet formation process or much later, as a result of large scale dynamical instabilities either in the local satellite system, or at the planetary scale. We review here the main characteristics of rings in our solar system, and discuss their main evolution processes and possible origin. We also discuss the recent discovery of rings around small bodies.Comment: Accepted for the Handbook of Exoplanet

    Implications of the Small Spin Changes Measured for Large Jupiter-Family Comet Nuclei

    Get PDF
    Rotational spin-up due to outgassing of comet nuclei has been identified as a possible mechanism for considerable mass-loss and splitting. We report a search for spin changes for three large Jupiter-family comets (JFCs): 14P/Wolf, 143P/Kowal-Mrkos, and 162P/Siding Spring. None of the three comets has detectable period changes, and we set conservative upper limits of 4.2 (14P), 6.6 (143P) and 25 (162P) minutes per orbit. Comparing these results with all eight other JFCs with measured rotational changes, we deduce that none of the observed large JFCs experiences significant spin changes. This suggests that large comet nuclei are less likely to undergo rotationally-driven splitting, and therefore more likely to survive more perihelion passages than smaller nuclei. We find supporting evidence for this hypothesis in the cumulative size distributions of JFCs and dormant comets, as well as in recent numerical studies of cometary orbital dynamics. We added 143P to the sample of 13 other JFCs with known albedos and phase-function slopes. This sample shows a possible correlation of increasing phase-function slopes for larger geometric albedos. Partly based on findings from recent space missions to JFCs, we hypothesise that this correlation corresponds to an evolutionary trend for JFCs. We propose that newly activated JFCs have larger albedos and steeper phase functions, which gradually decrease due to sublimation-driven erosion. If confirmed, this could be used to analyse surface erosion from ground and to distinguish between dormant comets and asteroids

    Homogeneously derived transit timings for 17 exoplanets and reassessed TTV trends for WASP-12 and WASP-4

    Get PDF
    We homogeneously analyse ∼3.2 × 105 photometric measurements for ∼1100 transit lightcurves belonging to 17 exoplanet hosts. The photometric data cover 16 years 2004–2019 and include amateur and professional observations. Old archival lightcurves were reprocessed using up-to-date exoplanetary parameters and empirically debiased limb-darkening models. We also derive self-consistent transit and radial-velocity fits for 13 targets. We confirm the nonlinear TTV trend in the WASP-12 data at a high significance, and with a consistent magnitude. However, Doppler data reveal hints of a radial acceleration about ( − 7.5 ± 2.2) m/s/yr, indicating the presence of unseen distant companions, and suggesting that roughly 10 per cent of the observed TTV was induced via the light-travel (or Roemer) effect. For WASP-4, a similar TTV trend suspected after the recent TESS observations appears controversial and model-dependent. It is not supported by our homogeneus TTV sample, including 10 ground-based EXPANSION lightcurves obtained in 2018 simultaneously with TESS. Even if the TTV trend itself does exist in WASP-4, its magnitude and tidal nature are uncertain. Doppler data cannot entirely rule out the Roemer effect induced by possible distant companions

    Changes in the surface irradiance during the total solar eclipse 2020 in Valcheta, Argentina

    Get PDF
    On December 14, 2020, southern South America experienced a total solar eclipse close to the solar noon. The path of totality, about 90 km wide, extended over the continental region from the Chilean west coast to the Argentine east coast, passing through the provinces of Neuquén, Río Negro and the extreme south of Buenos Aires. In order to study the effects on the atmosphere produced by the total eclipse, the Servicio Meteorológico Nacional Argentino (SMN) and Instituto de Investigaciones Científicas y Técnicas para la Defensa (CITEDEF) carried out a surface radiometric monitoring campaign in Valcheta (40.69°S; 66.15°W), Río Negro, Argentina. In this work, we explore the global surface solar irradiance on a horizontal plane (GHI) with the main objective of quantifying the changes in this parameter for cloudy and clear sky atmospheric conditions, combining ground-based measurements and modeling. A solar limb-darkening function was successfully implemented in the calculation of the irradiance at the top of the atmosphere (TOA) during the eclipse. We estimated a significant GHI attenuation of 41 % between the first (C1) and last (C4) contacts of eclipse compared to similar atmospheric conditions without the total eclipse, which represent a daily reduction of 12 %. In terms of irradiation, a reduction of 3360.1 KJ/m2 was calculated

    TNOs are Cool: A survey of the trans-Neptunian region V. Physical characterization of 18 Plutinos using Herschel PACS observations

    Full text link
    We present Herschel PACS photometry of 18 Plutinos and determine sizes and albedos for these objects using thermal modeling. We analyze our results for correlations, draw conclusions on the Plutino size distribution, and compare to earlier results. Flux densities are derived from PACS mini scan-maps using specialized data reduction and photometry methods. In order to improve the quality of our results, we combine our PACS data with existing Spitzer MIPS data where possible, and refine existing absolute magnitudes for the targets. The physical characterization of our sample is done using a thermal model. Uncertainties of the physical parameters are derived using customized Monte Carlo methods. The correlation analysis is performed using a bootstrap Spearman rank analysis. We find the sizes of our Plutinos to range from 150 to 730 km and geometric albedos to vary between 0.04 and 0.28. The average albedo of the sample is 0.08 \pm 0.03, which is comparable to the mean albedo of Centaurs, Jupiter Family comets and other Trans-Neptunian Objects. We were able to calibrate the Plutino size scale for the first time and find the cumulative Plutino size distribution to be best fit using a cumulative power law with q = 2 at sizes ranging from 120-400 km and q = 3 at larger sizes. We revise the bulk density of 1999 TC36 and find a density of 0.64 (+0.15/-0.11) g cm-3. On the basis of a modified Spearman rank analysis technique our Plutino sample appears to be biased with respect to object size but unbiased with respect to albedo. Furthermore, we find biases based on geometrical aspects and color in our sample. There is qualitative evidence that icy Plutinos have higher albedos than the average of the sample.Comment: 18 pages, 8 figures, 8 tables, accepted for publication in A&
    corecore