1,303 research outputs found

    Effect of intramuscular injections of DL-α-tocopheryl acetate on growth performance and extracellular matrix of growing lambs.

    Get PDF
    The effect of intramuscular injections of vitamin E on growth, carcass traits, intramuscular collagen (IMC) characteristics and decorin of growing lambs was studied. A total of 24 15-day-old Ile de France suckling male lambs were divided into two groups and weekly intramuscular injections of DL-α-tocopheryl acetate (control group, 0 IU; Vitamin E treatment, 150 IU) were given until the lambs were 64 days old. Lambs were individually weighted at 15, 29, 43, 57 days of age and at slaughter (71 days old). Dry matter intake and average daily weight gain were recorded. Hot and cold carcass weights were recorded and dressing percentages were calculated after dressing and chilling (2°C to 4°C for 24 h). Carcass shrink losses were calculated as well. Longissimus muscle (LM) pH and area were measured. The pelvic limb was removed and its percentage was calculated based on cold carcass weight. IMC and decorin analyses were assessed on LM and semimembranosus muscle (SM). DL-α-tocopheryl acetate treatment reduced (P<0.05) collagen maturity and increased (P<0.05) decorin in both LM and SM muscles of growing lambs, while it did not affect IMC content. In addition, vitamin E did not influence growth, carcass weight, dressing percentage, carcass shrink losses and area of LM but decreased (P<0.05) the pelvic limb percentage. The LM pH values were higher (P<0.05) in vitamin group than in control group. Furthermore, different IMC characteristics between the muscles (P<0.01) were apparent. Multiple intramuscular injections of DL-α-tocopheryl acetate influence extracellular matrix in lambs, which could affect meat tenderness

    Drivers of Small-Scale Fishers’ Acceptability across Mediterranean Marine Protected Areas at Different Stages of Establishment

    Get PDF
    The success of marine protected areas (MPAs) in achieving conservation and sustainable development goals hinges on, among other things, their social acceptability by local communities. Small-scale fishing communities represent a key stakeholder category within and around MPAs. Although many authors have examined the social acceptability of MPAs, relatively few studies have addressed this issue by considering how MPA acceptability is built and can be preserved. This study assessed the latent structure of MPA social acceptability and identified the individual and institutional variables driving stakeholders’ acceptability. Using questionnaire surveys, 124 small-scale fishers’ perceptions of MPAs and their social acceptability were explored in six Mediterranean MPAs (three were implemented, and three were designated). The results show that MPA acceptability is positively related to fishers’ age. The findings also highlight that the formal establishment of MPAs is not a sufficient condition for increasing MPA acceptability among fishers. Considerations about the possibility that MPA acceptability can be increased by building support and compliance emerged. MPA managers should implement successful long-term stakeholder engagement initiatives to increase commitment around conservation measures and to improve overall MPA effectiveness

    Exploring the endocannabinoidome in genetically obese (ob/ob) and diabetic (db/db) mice: Links with inflammation and gut microbiota

    Get PDF
    Background: Obesity and type 2 diabetes are two interrelated metabolic disorders characterized by insulin resistance and a mild chronic inflammatory state. We previously observed that leptin (ob/ob) and leptin receptor (db/db) knockout mice display a distinct inflammatory tone in the liver and adipose tissue. The present study aimed at investigating whether alterations in these tissues of the molecules belonging to the endocannabinoidome (eCBome), an extension of the endocannabinoid (eCB) signaling system, whose functions are important in the context of metabolic disorders and inflammation, could reflect their different inflammatory phenotypes. Results: The basal eCBome lipid and gene expression profiles, measured by targeted lipidomics and qPCR transcriptomics, respectively, in the liver and subcutaneous or visceral adipose tissues, highlighted a differentially altered eCBome tone, which may explain the impaired hepatic function and more pronounced liver inflammation remarked in the ob/ob mice, as well as the more pronounced inflammatory state observed in the subcutaneous adipose tissue of db/db mice. In particular, the levels of linoleic acid-derived endocannabinoid-like molecules, of one of their 12-lipoxygenase metabolites and of Trpv2 expression, were always altered in tissues exhibiting the highest inflammation. Correlation studies suggested the possible interactions with some gut microbiota bacterial taxa, whose respective absolute abundances were significantly different between ob/ob and the db/db mice. Conclusions: The present findings emphasize the possibility that bioactive lipids and the respective receptors and enzymes belonging to the eCBome may sustain the tissue-dependent inflammatory state that characterizes obesity and diabetes, possibly in relation with gut microbiome alterations

    A call to action by the italian mesotherapy society on scientific research

    Get PDF
    : Mesotherapy (local intradermal therapy, LIT) is a technique used to slowly spread drugs in tissues underlying the site of injection to prolong the pharmacological effect with respect to intramuscular injection. Recommendations for proper medical use of this technique have been made for pain medicine and rehabilitation, chronic venous disease, sport medicine, musculoskeletal disorders, several dermatological conditions, skin ageing, and immune-prophylaxis. Although mesotherapy is considered a valid technique, unresolved questions remain, which should be answered to standardize methodology and dosing regimen as well as to define the right indications in clinical practice. New randomized controlled trials are needed to test single products (dose, frequency of administration, efficacy and safety). Even infiltration of substances for dermo-cosmetic purposes must be guided by safety and efficacy tests before being proposed by mesotherapy. In this article, we put forth a preclinical and clinical research plan and a health technology assessment as a call to action by doctors, researchers and scientific societies to aid national health authorities in considering mesotherapy for prevention, treatment and rehabilitation paths

    N-oleoyldopamine, a novel endogenous capsaicin-like lipid that produces hyperalgesia.

    Get PDF
    N-Arachidonoyldopamine (NADA) was recently identified as an endogenous ligand for the vanilloid type 1 receptor (VR1). Further analysis of the bovine striatal extract from which NADA was isolated indicated the existence of substances corresponding in molecular mass to N-oleoyldopamine (OLDA), N-palmitoyldopamine (PALDA), and N-stearoyldopamine (STEARDA). Quadrupole time-of-flight mass spectrometric analysis of bovine striatal extracts revealed the existence of OLDA, PALDA, and STEARDA as endogenous compounds in the mammalian brain. PALDA and STEARDA failed to affect calcium influx in VR1-transfected human embryonic kidney (HEK) 293 cells or paw withdrawal latencies from a radiant heat source, and there was no evidence of spontaneous pain behavior. By contrast, OLDA induced calcium influx (EC(50) = 36 nm), reduced the latency of paw withdrawal from a radiant heat source in a dose-dependent manner (EC(50) = 0.72 microg), and produced nocifensive behavior. These effects were blocked by co-administration of the VR1 antagonist iodo-resiniferatoxin (10 nm for HEK cells and 1 microg/50 micro;l for pain behavior). These findings demonstrate the existence of an endogenous compound in the brain that is similar to capsaicin and NADA in its chemical structure and activity on VR1. Unlike NADA, OLDA was only a weak ligand for rat CB1 receptors; but like NADA, it was recognized by the anandamide membrane transporter while being a poor substrate for fatty-acid amide hydrolase. Analysis of the activity of six additional synthetic and potentially endogenous N-acyldopamine indicated the requirement of a long unsaturated fatty acid chain for an optimal functional interaction with VR1 receptors

    pRb2/p130 localized to the Cytoplasm in Diffuse Gastric Cancer

    Get PDF
    pRb2/p130 is a key tumor suppressor, whose oncosuppressive activity has mainly been attributed to its ability to negatively regulate cell cycle by interacting with the E2F4 and E2F5 transcription factors. Indeed, pRb2/p130 has been found altered in various cancer types in which it functions as a valuable prognostic marker. Here, we analyzed pRb2/p130 expression in gastric cancer tissue samples of diffuse histotype, in comparison with their normal counterparts. We found a cytoplasmic localization of pRb2/p130 in cancer tissue samples, whereas, in normal counterparts, we observed the expected nuclear localization. pRb2/p130 cytoplasmic delocalization can lead to cell cycle deregulation, but considering the emerging involvement of pRb2/p130 in other key cellular processes, it could contribute to gastric tumorigenesis also through other mechanisms. Our data support the necessity of further investigations to verify the possibility of using pRb2/p130 as a biomarker or potential therapeutic target for diffuse gastric cancer

    Genetic and pharmacological regulation of the endocannabinoid CB1 receptor in Duchenne muscular dystrophy

    Get PDF
    The endocannabinoid system refers to a widespread signaling system and its alteration is implicated in a growing number of human diseases. However, the potential role of endocannabinoids in skeletal muscle disorders remains unknown. Here we report the role of the endocannabinoid CB1 receptors in Duchenne's muscular dystrophy. In murine and human models, CB1 transcripts show the highest degree of expression at disease onset, and then decline overtime. Similar changes are observed for PAX7, a key regulator of muscle stem cells. Bioinformatics and biochemical analysis reveal that PAX7 binds and upregulates the CB1 gene in dystrophic more than in healthy muscles. Rimonabant, an antagonist of CB1, promotes human satellite cell differentiation in vitro, increases the number of regenerated myofibers, and prevents locomotor impairment in dystrophic mice. In conclusion, our study uncovers a PAX7-CB1 cross talk potentially exacerbating DMD and highlights the role of CB1 receptors as target for potential therapies
    • …
    corecore