795 research outputs found
Assessing depleted uranium (DU) contamination of soil, plants and earthworms at UK weapons testing sites
Depleted uranium (DU) weapons testing programmes have been conducted at two locations within the UK. An investigation was therefore carried out to assess the extent of any environmental contamination arising from these test programmes using both alpha spectrometry and mass spectrometry techniques. Uranium isotopic signatures indicative of DU contamination were observed in soil, plant and earthworm samples collected in the immediate vicinity of test firing points and targets, but contamination was found to be localised to these areas. The paper demonstrates the superiority of the 235U:238U ratio over the 234U:238U ratio for identifying and quantifying DU contamination in environmental samples and also describes the respective circumstances under which alpha spectrometry or mass spectrometry may be the more appropriate analytical tool
Investigating serum and tissue expression identified a cytokine/chemokine signature as a highly effective melanoma marker
The identification of reliable and quantitative melanoma biomarkers may help an early diagnosis and may directly affect melanoma mortality and morbidity. The aim of the present study was to identify effective biomarkers by investigating the expression of 27 cytokines/chemokines in melanoma compared to healthy controls, both in serum and in tissue samples. Serum samples were from 232 patients recruited at the IDI-IRCCS hospital. Expression was quantified by xMAP technology, on 27 cytokines/chemokines, compared to the control sera. RNA expression data of the same 27 molecules were obtained from 511 melanoma-and healthy-tissue samples, from the GENT2 database. Statistical analysis involved a 3-step approach: analysis of the single-molecules by Mann–Whitney analysis; analysis of paired-molecules by Pearson correlation; and profile analysis by the machine learning algorithm Support Vector Machine (SVM). Single-molecule analysis of serum expression identified IL-1b, IL-6, IP-10, PDGF-BB, and RANTES differently expressed in melanoma (p < 0.05). Expression of IL-8, GM-CSF, MCP-1, and TNF-α was found to be significantly correlated with Breslow thickness. Eotaxin and MCP-1 were found differentially expressed in male vs. female patients. Tissue expression analysis identified very effective marker/predictor genes, namely, IL-1Ra, IL-7, MIP-1a, and MIP-1b, with individual AUC values of 0.88, 0.86, 0.93, 0.87, respectively. SVM analysis of the tissue expression data identified the combination of these four molecules as the most effective signature to discriminate melanoma patients (AUC = 0.98). Validation, using the GEPIA2 database on an additional 1019 independent samples, fully confirmed these observations. The present study demonstrates, for the first time, that the IL-1Ra, IL-7, MIP-1a, and MIP-1b gene signature discriminates melanoma from control tissues with extremely high efficacy. We therefore propose this 4-molecule combination as an effective melanoma marker
Beyond appearance: An unusual manifestation of isolated oral secondary syphilis
Syphilis is a sexually acquired chronic infection caused by Treponema pallidum and is characterized by a variety of clinical manifestations. The secondary stage of the disease results from the hematogenous and lymphatic dissemination of treponemes after a few weeks or months, and it is characterized by recurrent activity of the disease, with muco-cutaneous as well as systemic manifestations. Mucosal lesions range from small, superficial ulcers that resemble painless aphthae to large gray plaques, and they are generally associated with systemic manifestations of the disease. The exclusive asymptomatic oral localization not associated with general manifestations is uncommon but may actually be unrecognized and under-reported. We report a case of isolated oral manifestation as the unique presentation of secondary syphilis
The CAST Time Projection Chamber
One of the three X-ray detectors of the CAST experiment searching for solar
axions is a Time Projection Chamber (TPC) with a multi-wire proportional
counter (MWPC) as a readout structure. Its design has been optimized to provide
high sensitivity to the detection of the low intensity X-ray signal expected in
the CAST experiment. A low hardware threshold of 0.8 keV is safely set during
normal data taking periods, and the overall efficiency for the detection of
photons coming from conversion of solar axions is 62 %. Shielding has been
installed around the detector, lowering the background level to 4.10 x 10^-5
counts/cm^2/s/keV between 1 and 10 keV. During phase I of the CAST experiment
the TPC has provided robust and stable operation, thus contributing with a
competitive result to the overall CAST limit on axion-photon coupling and mass.Comment: 19 pages, 11 figures and images, submitted to New Journal of Physic
First Italian outbreak of VIM-producing Serratia marcescens in an adult polyvalent intensive care unit, August-October 2018: A case report and literature review
Carbapenem-resistant Enterobacteriaceae has become a significant public health concern as hospital outbreaks are now being frequently reported and these organisms are becoming difficult to treat with the available antibiotics
Search for solar Kaluza-Klein axions in theories of low-scale quantum gravity
We explore the physics potential of a terrestrial detector for observing
axionic Kaluza-Klein excitations coming from the Sun within the context of
higher-dimensional theories of low-scale quantum gravity. In these theories,
the heavier Kaluza-Klein axions are relatively short-lived and may be detected
by a coincidental triggering of their two-photon decay mode. Because of the
expected high multiplicity of the solar axionic excitations, we find
experimental sensitivity to a fundamental Peccei-Quinn axion mass up to
eV (corresponding to an effective axion-photon coupling GeV) in theories with 2 extra
dimensions and a fundamental quantum-gravity scale of order 100
TeV, and up to eV (corresponding to GeV) in theories with 3 extra dimensions and
TeV. For comparison, based on recent data obtained from lowest
level underground experiments, we derive the experimental limits: GeV and GeV in the
aforementioned theories with 2 and 3 large compact dimensions, respectively.Comment: 19 pages, extended version, as to appear in Physical Review
Search for solar axions using Li-7
We describe a novel approach to the search for solar, near-monochromatic
hadronic axions, the latter being suggested to be created in the solar core
during M1 transitions between the first excited level of Li-7, at 478 keV, and
the ground state. As a result of Doppler broadening, in principle these axions
can be detected via resonant absorption by the same nuclide on the Earth.
Excited nuclei of Li-7 are produced in the solar interior by Be-7 electron
capture and thus the axions are accompanied by emission of Be-7 solar neutrinos
of energy 384 keV. An experiment was made which has yielded an upper limit on
hadronic axion mass of 32 keV at the 95% confidence level.Comment: revtex, 4 pages with 2 figures, title revised, minor changes, matches
version to appear in Phys. Rev.
CAST constraints on the axion-electron coupling
In non-hadronic axion models, which have a tree-level axion-electron
interaction, the Sun produces a strong axion flux by bremsstrahlung, Compton
scattering, and axio-recombination, the "BCA processes." Based on a new
calculation of this flux, including for the first time axio-recombination, we
derive limits on the axion-electron Yukawa coupling g_ae and axion-photon
interaction strength g_ag using the CAST phase-I data (vacuum phase). For m_a <
10 meV/c2 we find g_ag x g_ae< 8.1 x 10^-23 GeV^-1 at 95% CL. We stress that a
next-generation axion helioscope such as the proposed IAXO could push this
sensitivity into a range beyond stellar energy-loss limits and test the
hypothesis that white-dwarf cooling is dominated by axion emission
Prospects for the CERN Axion Solar Telescope Sensitivity to 14.4 keV Axions
The CERN Axion Solar Telescope (CAST) is searching for solar axions using the
9.0 T strong and 9.26 m long transverse magnetic field of a twin aperture LHC
test magnet, where axions could be converted into X-rays via reverse Primakoff
process. Here we explore the potential of CAST to search for 14.4 keV axions
that could be emitted from the Sun in M1 nuclear transition between the first,
thermally excited state, and the ground state of 57Fe nuclide. Calculations of
the expected signals, with respect to the axion-photon coupling, axion-nucleon
coupling and axion mass, are presented in comparison with the experimental
sensitivity.Comment: 4 pages, 1 figure. Submitted to Nucl. Instr. and Meth.
Solar axion search with the CAST experiment
The CAST (CERN Axion Solar Telescope) experiment is searching for solar
axions by their conversion into photons inside the magnet pipe of an LHC
dipole. The analysis of the data recorded during the first phase of the
experiment with vacuum in the magnet pipes has resulted in the most restrictive
experimental limit on the coupling constant of axions to photons. In the second
phase, CAST is operating with a buffer gas inside the magnet pipes in order to
extent the sensitivity of the experiment to higher axion masses. We will
present the first results on the data taking as well as the
system upgrades that have been operated in the last year in order to adapt the
experiment for the data taking. Expected sensitivities on the
coupling constant of axions to photons will be given for the recent run just started in March 2008.Comment: Proceedings of the ICHEP 2008 conferenc
- …