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ABSTRACT

We explore the physics potential of a terrestrial detector for observing axionic Kaluza-

Klein excitations coming from the Sun within the context of higher-dimensional theories

of low-scale quantum gravity. In these theories, the heavier Kaluza-Klein axions are rel-

atively short-lived and may be detected by a coincidental triggering of their two-photon

decay mode. Because of the expected high multiplicity of the solar axionic excitations,

we find experimental sensitivity to a fundamental Peccei-Quinn axion mass up to 10−2 eV

(corresponding to an effective axion-photon coupling gaγγ ≈ 2.× 10−12 GeV−1) in theories

with 2 extra dimensions and a fundamental quantum-gravity scale MF of order 100 TeV,

and up to 3.×10−3 eV (corresponding to gaγγ ≈ 6.×10−13 GeV−1) in theories with 3 extra

dimensions and MF = 1 TeV.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25288932?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Introduction

In superstring theories it turns out to be possible to lower the string scale without lowering

the Planck scale [1, 2, 4, 5, 6]. Most notably, Arkani-Hamed, Dimopoulos and Dvali [5]

have proposed the radical possibility that the fundamental scale of quantum gravity might

no longer be associated with the Planck mass MP = 1.2 × 1019 GeV, but the true scale

of quantum gravity, MF, could be many orders of magnitude smaller than MP, close to

TeV energies. In such a novel theoretical framework, the standard-model (SM) particles

can only live in a (1 + 3)-dimensional Minkowski subspace that constitutes our observable

world, whereas gravity may freely propagate to a number n of large extra dimensions.

Furthermore, the ordinary Planck mass MP would be related to the genuinely fundamental

scale MF through

MP ≈ MF (R MF)n/2 , (1.1)

where R denotes the compactification radius, which is considered to be common for all extra

compact dimensions. The case n = 1 and MF of order TeV leads to a visible macroscopic

compactification radius and is therefore not viable. Moreover, astrophysical and cosmo-

logical considerations give rise to a lower limit on MF of order 100 TeV, for the scenario

with n = 2 extra dimensions [7], while MF can be as low as 1 TeV for theories with n > 2

dimensions.

In addition to gravity, one might think that fields which are singlets under the

Standard-Model gauge group could also propagate in the [1 + (3 + n)]-dimensional space.

As such, one might consider isosinglet neutrinos [8, 9, 10] or axion fields [5, 11, 12]. In fact,

within the context of theories of TeV-scale quantum gravity, the latter realization is the-

oretically compelling for the solution of the strong CP problem through the Peccei-Quinn

(PQ) mechanism. According to this idea, the strong CP-odd parameter θ may be dynam-

ically eliminated by means of the spontaneous breakdown of a global U(1) symmetry. On

the other hand, phenomenological and astrophysical considerations place lower and upper

limits on the breaking scale vPQ of the PQ-U(1) symmetry, which has to be many orders

of magnitude larger than the TeV scale of quantum gravity. Therefore, in order to account

for this large mass scale, one inevitably has to introduce a singlet higher-dimensional ax-

ion field into the QCD Lagrangian, with a higher-dimensional PQ-breaking scale v̄PQ that

could even be much smaller than 1 TeV. As we will see below, as a result of the compact-

ification of the large extra dimensions, the effective four-dimensional PQ-breaking scale

vPQ can be obtained from v̄PQ, after multiplying the latter by the huge higher-dimensional

volume factor (MFR)n/2 ≈ MP/MF. In this way, the PQ-breaking scale vPQ may reside in
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the phenomenologically allowed region. Another feature of the higher-dimensional axionic

theories is that their mass spectrum consists of a tower of Kaluza-Klein (KK) excitations,

which have an almost equidistant mass-spacing of order 1/R. The lowest KK excitation

may be identified with the ordinary PQ axion and specifies the strength of each KK state

to matter.

This tower of axionic modes has two phenomenological consequences. First, for a

fixed value of the axion coupling constant to matter or photons, a given source such as the

Sun will emit axions of each mode up to the kinematic limit. The high multiplicity of the

KK axion modes thus leads to much larger flux than would be otherwise expected. Second,

the large mass of the KK modes compared to usual axions dramatically increases the width

of the decay process a → γγ by opening up phase space. Therefore, one may plausibly

search for the decay photons of the solar KK axion flux in a laboratory experiment.

In this paper, we shall analyze the potential of a terrestrial axion detector to observe

the radiative decay of solar KK axion modes. In particular, such a detector proves inex-

pensive and may run in parallel with the CERN Axion Solar Telescope (CAST) which will

be built from a decommissioned LHC test magnet [13]. We will find that the suggested ter-

restrial detector may reach the unprecedented sensitivity of the 10−2-eV level (gaγγ ≈ 10−12

GeV−1) to the fundamental PQ axion mass (mPQ).

The paper is organized as follows: in Section 2 we briefly describe the basic low-

energy structure of a generic theory that includes higher-dimensional axions. In Section 3

we compute the solar flux of massive KK axions. In Section 4 we estimate the event rates

of photons due to axion decays as seen by a terrestrial detector. Section 5 summarizes our

conclusions.

2 Axions in large extra dimensions

Before discussing the higher-dimensional case, let us first recall the main phenomenological

predictions of the axion theories in four dimensions. The axionic sector of the effective

Lagrangian which is of interest to us has the generic form

Leff =
1

2
(∂µa)(∂µa) − 1

2
m2

PQ a2 +
gaγγ

4
a Fµν F̃ µν , (2.1)

where a is the PQ axion, Fµν and F̃ µν are the electromagnetic field-strength tensor and its

associate dual tensor, and

gaγγ =
ξ αem

π

1

vPQ
(2.2)
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is the effective axion-photon-photon coupling. The multiplicative parameter ξ in Eq. (2.2)

is generally of order unity, and crucially depends on the axion model under study [14, 15].

Furthermore, the PQ axion mass mPQ is related to the breaking scale vPQ of the PQ U(1)

symmetry through

mPQ ∼ m2
π

vPQ

, (2.3)

where mπ ≈ 135 MeV is the pion mass. Astrophysical and cosmological limits [16] indicate

that

109 GeV <∼ vPQ
<∼ 1012 GeV , (2.4)

which in turn by virtue of Eq. (2.3) implies that

10−2 eV >∼ mPQ
>∼ 10−5 eV, (2.5)

respectively. The lifetime of the PQ axion is easily calculated to be

τ(a → γγ) =
64π

g2
aγγm

3
PQ

≈ 1048 days ×
(

10−15 GeV−1

gaγγ

)2 (
10−5 eV

mPQ

)3

. (2.6)

For gaγγ = 10−15 GeV−1, which corresponds to mPQ = 10−5 eV, the axion lifetime turns out

to be much larger than the age of the universe. The prospect of detecting photonic axion

decays would have remained hopeless, even if one had considered larger axion masses. For

instance, for mPQ = 10−1 eV (gaγγ = 10−11 GeV−1), the axion decay is still undetectable

with a lifetime τ(a → γγ) ≈ 1027 days.

We shall now focus on the higher-dimensional case. Following Refs. [5, 11, 12], we

introduce one singlet axion field a(xµ, y) which feels the presence of a number δ ≤ n of

large extra dimensions, denoted by y. The relevant axionic sector may then be determined

by the effective Lagrangian

Leff =
∫

dδy
[

1

2
M δ

F (∂µa)(∂µa) +
1

2
M δ

F (∂δa)(∂δa) + δ(δ)(y)
ξ αem

π

a

v̄PQ
Fµν F̃ µν

]
, (2.7)

where v̄PQ denotes the original higher-dimensional PQ-breaking scale. In Eq. (2.7), the

axion field is compactified on a Z2 orbifold with an orbifold action [12]: y → −y, i.e. the

axion field satisfies the properties: a(xµ, y) = a(xµ, y+2πR) and a(xµ, y) = a(xµ,−y). The

latter gives rise to the KK decomposition:

a(xµ, y) =
∞∑

n=0

an(xµ) cos
(

ny

R

)
. (2.8)
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Substituting Eq. (2.8) into Eq. (2.7) and taking the PQ mechanism into consideration, we

arrive at the effective Lagrangian [12]

Leff =
1

2

∞∑
n=0

(∂µan)(∂µan) − 1

2
m2

PQ a2
0 −

1

2

∞∑
n=1

n2

R2
a2

n +
ξ αem

π

∞∑
n=0

rnan

vPQ
Fµν F̃ µν , (2.9)

with r0 = 1 and rn>0 =
√

2. From Eq. (2.9), it is easy to read off the effective couplings of

the KK axions to photons,

ganγγ =
rnξ αem

π

1

vPQ
≈ gaγγ . (2.10)

Instead of a Z2 orbifold compactification, one could have equally considered the compact-

ification on a δ-dimensional torus [5], leading to modified coupling constants by factors of

order unity. For the sake of simplicity we will always assume that the KK axion modes

couple to photons with the usual PQ coupling gaγγ ; it is trivial to insert model-dependent

factors in the final result.

Few comments are now in order in connection with the effective KK Lagrangian (2.9).

First, we should remark that the higher-dimensional PQ-breaking scale v̄PQ may be very

low at the TeV scale, when compared to the usual four-dimensional one vPQ, i.e.

v̄PQ ≈
(

MF

MP

)δ/n

vPQ . (2.11)

The suppression mechanism is very analogous to the case, in which the fundamental scale

of quantum gravity can be reduced to the electroweak scale in the presence of large extra

dimensions [5] (cf. Eq. (1.1)). In Eq. (2.11), the simplest setting is to consider that both

gravity and axions live within the same higher-dimensional space, i.e. δ = n. Second, one

notices that the lowest KK state constitutes the PQ axion of the theory which determines

the size of the coupling of the KK axions to photons. Finally, the KK-axion masses are

given by

ma0 = mPQ � 1

R
, man ≈ n

R
, (2.12)

with n =
√

n2
1 + · · ·+ n2

δ > 0. It is interesting to observe that for the higher-dimensional

scenarios under discussion, the mass-spacing of the KK axions is always larger than PQ

masses lying in the phenomenologically favoured region, with mPQ
<∼ 0.01 eV. For example,

for δ = 2 and MF ≈ 100 TeV [7], one obtains 1/R ∼ 1 eV, while for δ = 3 and MF ≈ 1 TeV,

the inverse of the compactification radius reaches a much higher value, i.e. 1/R ∼ 10 eV.

The lifetime of an individual axionic KK state an may easily be computed from Eq.

(2.6). In this way, we find

τ(an → γγ) ≈
(

mPQ

man

)3

τ(a0 → γγ) . (2.13)
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We observe that the lifetime of the KK axion an decreases rapidly with the third power of

its mass.

3 Solar flux of Kaluza-Klein axions

3.1 Primakoff process

In order to calculate the solar flux of KK axion modes we restrict ourselves to hadronic

axion models where these particles do not couple to electrons at tree level. The dominant

production processes will thus involve the axion-photon interaction; the axion-nucleon cou-

pling will not be important in the Sun. The usual PQ axions are primarily produced by the

Primakoff process γ + Ze → Ze + a where a thermal photon in the solar interior converts

into an axion in the Coulomb fields of nuclei and electrons in the solar plasma. In addition,

the KK modes can be produced by the photon coalescence process γγ → a. For PQ axions,

this process is suppressed by the small mass and actually is kinematically forbidden in

the solar plasma because the effective photon mass (plasma frequency) is about 0.3 keV.

However, with a temperature in the Sun of around 1.3 keV, the solar KK axions will be

produced with masses up to several keV, rendering the coalescence process an important

contribution.

Beginning with the Primakoff process, the production cross section on a target with

charge Ze in a nonrelativistic plasma is found to be [17]

dσγ→a

dΩ
=

g2
aγγZ

2α

8π

|k× p|2
q4

q2

q2 + κ2
, (3.1)

where k is the photon momentum, p the axion momentum, and q = k−p the momentum

transfer. The last factor takes account of screening effects where the Debye-Hückel screening

scale is given by

κ2 =
4πα

T

ρ

mu

Ye +
∑
j

Z2
j Yj

 . (3.2)

In Eq. (3.2), ρ is the mass density, mu the atomic mass unit (approximately the proton

mass), Ye the number of electrons per baryon in the medium, and Yj the number of var-

ious nuclear species j per baryon with nuclear charge Zj . The medium is assumed to be

nonrelativistic, and recoil effects by the targets have been neglected since typical photon

energies of a few keV are much smaller than even the electron mass. It turns out that we

have the approximate relation, κ ≈ 7T , between the screening scale κ and the temperature

T in the relevant regions of the Sun.
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Summing over all target species of the medium, the photon-axion transition rate is

finally

Γγ→a =
g2

aγγTκ2

32π2

|k|
ω

∫
dΩ

|k× p|2
q2(q2 + κ2)

, (3.3)

where ω is the photon energy and the factor |k|/ω is the relative velocity between photons

and target particles. The angular integration can be performed explicitly, leading to

Γγ→a =
g2

aγγTκ2

32π

k

ω

{
[(k + p)2 + κ2] [(k − p)2 + κ2]

4 k p κ2
ln

[
(k + p)2 + κ2

(k − p)2 + κ2

]

− (k2 − p2)2

4 k p κ2
ln

[
(k + p)2

(k − p)2

]
− 1

}
, (3.4)

where k = |k| and p = |p|.
The effective “photon mass” in the medium, the plasma frequency, is small in the

Sun, typically about 0.3 keV, while the temperature near the solar center is T = 1.3 keV

and typical photon energies are 3T ≈ 4 keV. Therefore, we ignore the plasma frequency

and treat photons as strictly massless. In a photon-axion transition the energy is conserved

because we ignore recoil effects. Therefore, we use k = E with E the axion energy and

p =
√

E2 −m2 so that finally

Γγ→a =
g2

aγγTκ2

32π

{
(m2 − κ2)2 + 4E2κ2

4 E p κ2
ln

[
(E + p)2 + κ2

(E − p)2 + κ2

]
− m4

4 E p κ2
ln

[
(E + p)2

(E − p)2

]
− 1

}
.

(3.5)

Note that the expression in curly brackets expands for small momenta as

{. . .} =
8p2

3(κ2 + m2)
+O(p4) , (3.6)

so that the emission of slow-moving axions is suppressed.

The axion flux at Earth, differential with regard to the axion energy E, is then

found by multiplying the transition rate with the blackbody photon flux in the Sun, and

integrating over a standard solar model,

Φa =
dFa

dE
=

1

4πd2�

∫
sun

d3r Γγ→a
1

π2

E2

eE/T − 1
. (3.7)

Here T and κ2 depend on the location in the Sun and d� = 1.50× 1013 cm is the distance

to the Sun. We stress that no velocity factor appears for massive axions because in a

stationary situation all axions produced per second must traverse a spherical shell around

the Sun within one second.
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In Ref. [18] an approximation formula for the axion flux at Earth was given which we

slightly modify and extend to the case of massive KK axions,

Φa = 4.20× 1010 cm−2 s−1 keV−1
(

gaγγ

10−10 GeV−1

)2 E p2

eE/1.1 − 0.7
(1 + 0.02 m) , (3.8)

where E, p and m are to be measured in keV. This approximation formula is typically good

to better than ±15% for all relevant conditions, and even better than a few percent for the

most relevant case of axion masses of larger than a few keV.

3.2 Photon Coalescence

In order to calculate the production rate of axions from the process γγ → a in a thermal

medium, we approximate the Bose-Einstein photon distribution by a Maxwell-Boltzmann

one, i.e. we use e−ω/T instead of 1/(eω/T − 1) for the photon occupation number. This

approximation is justified since we are interested only in axion masses and thus axion

energies of order the temperature or larger. The production rate of axions of energy E per

unit volume and unit energy interval is then found to be

dNa

dE
=

g2
aγγm

4

128 π3
p e−E/T , (3.9)

where again p =
√

E2 −m2 is the axion momentum. Integrating this expression over a

standard solar model we find the axion flux at Earth. It is approximately represented by

Φa = 1.68× 109 cm−2 s−1 keV−1
(

gaγγ

10−10 GeV−1

)2

m4 p
(

10

0.2 + E2
+ 1 + 0.0006 E3

)
e−E,

(3.10)

where again m, E and p are to be taken in keV. For 1 keV < E < 16 keV the quality of

the approximation is better than 5%. Both lower and higher energies are irrelevant for our

purposes.

3.3 Axion limit from solar energy loss

As a next step we consider the energy loss of the Sun as a function of gaγγ . To this end we

first calculate the solar axion luminosity as a function of the KK axion mass

La(m) = 4πd2
�

∫ ∞
m

dE E Φa(E) (3.11)
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Table 1: Coefficients A for Eq. (3.13).

Primakoff Coalescence Sum

δ = 1 0.015 0.0033 0.018

δ = 2 0.12 0.067 0.19

δ = 3 0.99 1.06 2.1

for the two processes. Then we need to sum over all KK modes with their different masses.

Instead, we integrate over the density of modes which is Rδ, where R is the compactification

radius and δ the number of compactified dimensions. Therefore, the axion luminosity is

La =
2πδ/2

Γ(δ/2)
Rδ

∫ ∞

0
dm mδ−1La(m) , (3.12)

where the first factor is the surface of the δ dimensional unit sphere, i.e. 2 for δ = 1, 2π for

δ = 2 and 4π for δ = 3. Numerically, we write the result in the form

La = A L�
(

gaγγ

10−10 GeV−1

)2 (
R

keV−1

)δ

(3.13)

where L� is the luminosity of the Sun and the values of the coefficients A for the two

processes and different dimensions δ are given in Table 1. It depends on δ which of the

processes is more important.

Helioseismology implies that a novel energy-loss mechanism of the Sun must not

exceed something like 0.2 L� [19]. This limit translates into the constraint

(
gaγγ

10−10 GeV−1

) (
R

keV−1

)δ/2

<


3.3 for δ = 1,

1.0 for δ = 2,

0.31 for δ = 3.

(3.14)

As an example we use the simplest setting of δ = n = 2 large extra dimensions, with

MF = 100 TeV and R = 103 keV−1, leading to gaγγ < 10−13 GeV−1. For δ = n = 3

large extra dimensions, with MF = 1 TeV and R = 102 keV−1, we get an even better

limit of gaγγ < 0.3 × 10−13 GeV−1. This is to be compared with the solar PQ axion

limit of gaγγ < 10−9 GeV−1 [19]. Of course, the KK limits could have been estimated by

simply scaling the standard limit with the multiplicity of KK modes and observing that the

maximum allowed mass is a few keV before the solar flux gets suppressed by the kinematic

threshold.
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4 Flux of decay photons

4.1 Numerical estimates

The KK axions emerging from the Sun are neither nonrelativistic nor strongly relativistic.

The average speed is 0.95 (in units of the speed of light) for m = 1 keV, 0.79 for 3 keV,

0.66 for 5 keV, 0.57 for 7 keV, and 0.51 for 9 keV. Therefore, the decay photons will have

a considerable angular spread relative to the direction of the Sun. The event rate in a

detector thus depends crucially on its geometry. For our simple estimate we will assume

that the detector consists of a volume V , and that any x-ray produced within this volume

will be detected with unit efficiency, independently of its direction.

In view of the solar energy-loss limits derived above we further note that even keV-

mass axions are long-lived relative to the Sun-Earth distance so that the axion flux on its

way to Earth is not significantly diminished by radiative decays. Therefore, at any given

time the total number of solar axions of mass m per unit energy interval in the detector is

dNa

dE
=

V Φa

v
(4.1)

where v = p/E is the axion velocity. In the laboratory frame they decay with a rate

(m/E)Γa→γγ = (g2
aγγ/64π)m4/E, each decay producing 2 photons with energies which are

uniformly distributed in the range (E − p)/2 ≤ ω ≤ (E + p)/2. This implies that in

order to get a decay photon of energy ω the parent axion must have E ≥ ω + m2/4ω and

that the photon energies from a given axion decay are spread over an interval of length

p. Altogether, then, we find for the differential event rate of decay photons from axions of

mass m
dNγ(m, ω)

dω
= Γa→γγ m V

∫ ∞
ω+m2/4ω

dE
2Φa

p2
. (4.2)

Finally, in order to obtain the total event rate due to all modes of the tower of KK modes

we proceed as before by integrating over the density of modes so that

dNγ(ω)

dω
=

2πδ/2

Γ(δ/2)
RδV

∫ ∞
0

dm mδΓa→γγ

∫ ∞
ω+m2/4ω

dE
2Φa

p2
. (4.3)

Numerically, we write this in the form

dNγ(ω)

dω
= Aδ

(
gaγγ

10−10 GeV−1

)4 (
R

keV−1

)δ( V

m3

)
fδ(ω) (4.4)

where Aδ is a rate given in Table 2 and fδ(ω) is a spectrum with its integral normalized

to unity. These normalized functions are surprisingly well approximated by the simple
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Table 2: Coefficients for the rate Eq. (4.4) and for the spectra of Eq. (4.5).

Aδ [day−1] a [keV−1] p 〈ω〉 [keV]

δ = 1 0.16 0.0338 3.8 5.3

δ = 2 4.7 0.0107 4.5 6.1

δ = 3 100. 0.0037 5.1 6.8

analytic form

f(ω) = a ωp e−0.9 ω (4.5)

where a and p are given in Table 2 for each δ. Of course, ω is understood in keV. In Table 2

we also give the average photon energies.

4.2 Experimental sensitivity

On the experimental side, we assume a 1 m3 cubic detector of the Micromegas type. This

is a new kind of gas detector which can be used to measure photon interactions with good

space and energy resolution [21]. A small detector of this kind, with a surface of 15×15 cm2,

was used in Saclay (on the surface) and measured 1.2 neutral particles per second in a 1 keV

wide energy interval centred at 1 keV. At these energies, practically all photons entering

the chamber interact in the gas, so we have a measurement of the neutral particle flux

through a surface of 15× 15 cm2, which is about 53 neutral particles/m2/sec [22].

In the search for axion decays into two gammas, the background originates from two

neutral particles interacting in the gas within the resolving time of the chamber. Therefore,

one can choose the gas so that the mean absorption length of 1 keV photons is 0.3 cm [23].

As a result, the interaction points of the two photons from axion decay will be very close

to each other, in a cell with volume ∆x∆y∆z = 1 cm3. In the Micromegas chamber ∆x

and ∆y are measured directly and ∆z is measured from the time interval between the two

signals. For ∆z = 1 cm, the time interval is 2 × 10−7 sec. Thus, in a small cell of 1 cm3

volume, the rate of events from two uncorrelated neutral particles is 5.6×10−12 events/sec.

As there are 106 cells when going from 1 cm3 cell size to 1 m3 size of the detector, the

background rate becomes 0.5 events per day.

At this point, we should remark that we have not used two additional criteria to

reduce the background:
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a) Real photons in the keV region entering the detector from outside will interact very

close to the detector walls. If one requires that the events occur in a fiducial volume

at some distance (few cm) from the walls, only photons generated inside the detector

volume are important.

b) If axions are non-relativistic, the two photons will have approximately equal energies.

Of course, a more precise estimate of the background requires a measurement with a realistic

detector in the environment where the experiment is going to be performed.

Applying now Eq. (4.4) to the simplest setting of δ = n = 2 large extra dimensions,

with MF = 100 TeV and R = 103 keV−1, we find the rate

Rγ ≈ 0.05 events day−1 m−3
(

gaγγ

10−12 GeV−1

)4

. (4.6)

Consequently, the suggested terrestrial detector outlined above will be sensitive to an ef-

fective aγγ-coupling gaγγ
<∼ 2. × 10−12 GeV−1, corresponding to a fundamental PQ mass

mPQ ≈ 10−2 eV. In particular, for δ = n = 3 large extra dimensions, with MF = 1 TeV

and R = 102 keV−1, we obtain an estimate for the rate

Rγ ≈ 1.0 events day−1 m−3
(

gaγγ

10−12 GeV−1

)4

. (4.7)

From this last result, one can readily see that the axion detector will be maximally sensitive

to an effective aγγ-coupling gaγγ
<∼ 6.× 10−13 GeV−1, corresponding to a fundamental PQ

mass mPQ ≈ 3.× 10−3 eV.

Finally, it would be interesting to know whether measurements of γ-rays coming from

the Sun could impose severe constraints on the 2γ-decay mode of axions and hence on the

parameters of the higher-dimensional axionic models under consideration [20]. According

to recent analyses [24], the solar x-ray luminosity in the range of interest to us, i.e. above

0.4 keV, is

Lx−rays ≈ 109 events/cm2/sec ≈ 1017 events/day/m2 . (4.8)

As the decay path available for solar axions is the distance to the Sun of 1.5× 1011 m, the

x-ray luminosity is by many orders of magnitude larger than the one expected from the

decays of the KK axions.

5 Conclusions

We have examined the potential of an underground detector shielded from cosmic-ray

backgrounds for detecting KK axions coming from the Sun. The solar KK axions may be
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produced via the Primakoff process γ +Ze → Ze+a or via the photon coalescence process

γγ → a. In either case, we have calculated the expected flux of the KK axions, as well

as estimated possible limits derived from helioseismology. We find that solar KK axions

might lead to observable signatures in terrestrial experiments. In fact, the characteristic

2γ-decay mode of the KK axions offers a unique possibility to drastically reduce the cosmic

background by coincidental triggering both of the emitted photons. Our elaborate estimates

have shown that a terrestrial detector of 1 m3 size may be sensitive to a fundamental PQ-

axion mass up to 10−2 eV, which amounts to having an effective axion-photon coupling

gaγγ ≈ 2. × 10−12 GeV−1, in theories with 2 large extra dimensions and a fundamental

quantum-gravity scale MF = 100 TeV. In particular, in theories with 3 large compact

dimensions with MF = 1 TeV, the suggested detector is capable of probing PQ-axion masses

up to 3.× 10−3 eV, corresponding to an effective axion-photon coupling gaγγ ≈ 6.× 10−13

GeV−1.
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