173 research outputs found

    A sensitive survey for 13CO, CN, H2CO and SO in the disks of T Tauri and Herbig Ae stars

    Full text link
    We use the IRAM 30-m telescope to perform a sensitive search for CN N=2-1 in 42 T Tauri or Herbig Ae systems located mostly in the Taurus-Auriga region. 13^{13}CO J=2-1 is observed simultaneously to indicate the level of confusion with the surrounding molecular cloud. The bandpass also contains two transitions of ortho-H2_2CO, one of SO and the C17^{17}O J=2-1 line which provide complementary information on the nature of the emission. While 13^{13}CO is in general dominated by residual emission from the cloud, CN exhibits a high disk detection rate >50> 50% in our sample. We even report CN detection in stars for which interferometric searches failed to detect 12^{12}CO, presumably because of obscuration by a foreground, optically thick, cloud. Comparison between CN and o-H2_2CO or SO line profiles and intensities divide the sample in two main categories. Sources with SO emission are bright and have strong H2_2CO emission, leading in general to [H2_2CO/CN]>0.5 > 0.5. Furthermore, their line profiles, combined with a priori information on the objects, suggest that the emission is coming from outflows or envelopes rather than from a circumstellar disk. On the other hand, most sources have [H2_2CO/CN]<0.3 < 0.3, no SO emission, and some of them exhibit clear double-peaked profiles characteristics of rotating disks. In this second category, CN is likely tracing the proto-planetary disks. From the line flux and opacity derived from the hyperfine ratios, we constrain the outer radii of the disks, which range from 300 to 600 AU. The overall gas disk detection rate (including all molecular tracers) is 68\sim 68%, and decreases for fainter continuum sources. This study shows that gas disks, like dust disks, are ubiquitous around young PMS stars in regions of isolated star formation, and that a large fraction of them have R>300R > 300 AU.Comment: 31 pages (including 59 figures

    Sensitive survey for 13CO, CN, H2CO, and SO in the disks of T Tauri and Herbig Ae stars II: Stars in ρ\rho Oph and upper Scorpius

    Full text link
    We attempt to determine the molecular composition of disks around young low-mass stars in the ρ\rho Oph region and to compare our results with a similar study performed in the Taurus-Auriga region. We used the IRAM 30 m telescope to perform a sensitive search for CN N=2-1 in 29 T Tauri stars located in the ρ\rho Oph and upper Scorpius regions. 13^{13}CO J=2-1 is observed simultaneously to provide an indication of the level of confusion with the surrounding molecular cloud. The bandpass also contains two transitions of ortho-H2_2CO, one of SO, and the C17^{17}O J=2-1 line, which provides complementary information on the nature of the emission. Contamination by molecular cloud in 13^{13}CO and even C17^{17}O is ubiquitous. The CN detection rate appears to be lower than for the Taurus region, with only four sources being detected (three are attributable to disks). H2_2CO emission is found more frequently, but appears in general to be due to the surrounding cloud. The weaker emission than in Taurus may suggest that the average disk size in the ρ\rho Oph region is smaller than in the Taurus cloud. Chemical modeling shows that the somewhat higher expected disk temperatures in ρ\rho Oph play a direct role in decreasing the CN abundance. Warmer dust temperatures contribute to convert CN into less volatile forms. In such a young region, CN is no longer a simple, sensitive tracer of disks, and observations with other tracers and at high enough resolution with ALMA are required to probe the gas disk population.Comment: 18 pages, 5 figures, accepted for publication in A&

    Dynamical Masses of Low Mass Stars in the Taurus and Ophiuchus Star Forming Regions

    Full text link
    We report new dynamical masses for 5 pre-main sequence (PMS) stars in the L1495 region of the Taurus star-forming region (SFR) and 6 in the L1688 region of the Ophiuchus SFR. Since these regions have VLBA parallaxes these are absolute measurements of the stars' masses and are independent of their effective temperatures and luminosities. Seven of the stars have masses <0.6<0.6 solar masses, thus providing data in a mass range with little data, and of these, 6 are measured to precision <5%< 5 \%. We find 8 stars with masses in the range 0.09 to 1.1 solar mass that agree well with the current generation of PMS evolutionary models. The ages of the stars we measured in the Taurus SFR are in the range 1-3 MY, and <1<1 MY for those in L1688. We also measured the dynamical masses of 14 stars in the ALMA archival data for Akeson~\&~Jensen's Cycle 0 project on binaries in the Taurus SFR. We find that the masses of 7 of the targets are so large that they cannot be reconciled with reported values of their luminosity and effective temperature. We suggest that these targets are themselves binaries or triples.Comment: 20 page

    VINCI / VLTI observations of Main Sequence stars

    Full text link
    Main Sequence (MS) stars are by far the most numerous class in the Universe. They are often somewhat neglected as they are relatively quiet objects (but exceptions exist), though they bear testimony of the past and future of our Sun. An important characteristic of the MS stars, particularly the solar-type ones, is that they host the large majority of the known extrasolar planets. Moreover, at the bottom of the MS, the red M dwarfs pave the way to understanding the physics of brown dwarfs and giant planets. We have measured very precise angular diameters from recent VINCI/VLTI interferometric observations of a number of MS stars in the K band, with spectral types between A1V and M5.5V. They already cover a wide range of effective temperatures and radii. Combined with precise Hipparcos parallaxes, photometry, spectroscopy as well as the asteroseismic information available for some of these stars, the angular diameters put strong constraints on the detailed models of these stars, and therefore on the physical processes at play.Comment: 5 pages, 3 figures. To appear in the Proceedings of IAU Symposium 219, "Stars as Suns", Editors A. Benz & A. Dupree, Astronomical Society of the Pacifi

    VLTI/VINCI diameter constraints on the evolutionary status of delta Eri, xi Hya, eta Boo.

    Get PDF
    other location: http://www.obs-nice.fr/pichon/science.html ; Accepted for publication in Astron. Astrophys.International audienceUsing VLTI/VINCI angular diameter measurements, we constrain the evolutionary status of three asteroseismic targets: the stars δ\delta Eri, ξ\xi Hya, η\eta Boo. Our predictions of the mean large frequency spacing of these stars are in agreement with published observational estimations. Looking without success for a companion of δ\delta Eri we doubt on its classification as an RS CVn star

    A near-infrared interferometric survey of debris disc stars. II. CHARA/FLUOR observations of six early-type dwarfs

    Full text link
    High-precision interferometric observations of six early-type main sequence stars known to harbour cold debris discs have been obtained in the near-infrared K band with the FLUOR instrument at the CHARA Array. The measured squared visibilities are compared to the expected visibility of the stellar photospheres based on theoretical photospheric models taking into account rotational distortion, searching for potential visibility reduction at short baselines due to circumstellar emission. Our observations bring to light the presence of resolved circumstellar emission around one of the six target stars (zeta Aql) at the 5 sigma level. The morphology of the emission source cannot be directly constrained because of the sparse spatial frequency sampling of our interferometric data. Using complementary adaptive optics observations and radial velocity measurements, we find that the presence of a low-mass companion is a likely origin for the excess emission. The potential companion has a K-band contrast of four magnitudes, a most probable mass of about 0.6 Msun, and is expected to orbit between about 5.5 AU and 8 AU from its host star assuming a purely circular orbit. Nevertheless, by adjusting a physical debris disc model to the observed Spectral Energy Distribution of the zeta Aql system, we also show that the presence of hot dust within 10 AU from zeta Aql, producing a total thermal emission equal to 1.69 +- 0.31% of the photospheric flux in the K band, is another viable explanation for the observed near-infrared excess. Our re-interpretation of archival near- to far-infrared photometric measurements shows however that cold dust is not present around zeta Aql at the sensitivity limit of the IRS and MIPS instruments onboard Spitzer, and urges us to remove zeta Aql from the category of bona fide debris disc stars.Comment: 14 pages, accepted for publication in A&

    Eating and feeding disorders in pediatric age

    Get PDF
    Eating and feeding disorders are common in pediatric age and may be important to discover and recover the early symptoms in order to optimize the treatment and management

    Hot exozodiacal dust resolved around Vega with IOTA/IONIC

    Get PDF
    Although debris discs have been detected around a significant number of main-sequence stars, only a few of them are known to harbour hot dust in their inner part where terrestrial planets may have formed. Thanks to infrared interferometric observations, it is possible to obtain a direct measurement of these regions, which are of prime importance for preparing future exo-Earth characterisation missions. In this context, we have resolved the exozodiacal dust disc around Vega with the help of infrared stellar interferometry and estimated the integrated H-band flux originating from the first few AUs of the debris disc. Using precise H-band interferometric measurements obtained with the 3-telescope IOTA/IONIC interferometer (Mount Hopkins, Arizona), thorough modelling of both interferometric data (squared visibility and closure phase) and spectral energy distribution was performed to constrain the nature of the near-infrared excess emission. The most straightforward scenario consists in a compact dust disc producing a thermal emission that is largely dominated by small grains located between 0.1 and 0.3 AU from Vega and accounting for 1.23 +/- 0.45% of the near-infrared stellar flux for our best-fit model. This flux ratio is shown to vary slightly with the geometry of the model used to fit our interferometric data (variations within +/-0.19%). Initially revealed by K-band CHARA/FLUOR observations, the presence of hot exozodiacal dust in the vicinity of Vega is confirmed by our H-band IOTA/IONIC measurements at the 3-sigma level. Whereas the origin of the dust is still uncertain, its presence and the possible connection with the outer disc suggest that the Vega system is currently undergoing major dynamical perturbations.Comment: 10 pages, 9 figures, accepted for publication in A&

    A near-infrared interferometric survey of debris disk stars. I. Probing the hot dust content around epsilon Eridani and tau Ceti with CHARA/FLUOR

    Full text link
    We probed the first 3AU around tau Ceti and epsilon Eridani with the CHARA array (Mt Wilson, USA) in order to gauge the 2micron excess flux emanating from possible hot dust grains in the debris disks and to also resolve the stellar photospheres. High precision visibility amplitude measurements were performed with the FLUOR single mode fiber instrument and telescope pairs on baselines ranging from 22 to 241m of projected length. The short baseline observations allow us to disentangle the contribution of an extended structure from the photospheric emission, while the long baselines constrain the stellar diameter. We have detected a resolved emission around tau Cet, corresponding to a spatially integrated, fractional excess flux of 0.98 +/- 0.21 x 10^{-2} with respect to the photospheric flux in the K'-band. Around eps Eri, our measurements can exclude a fractional excess of greater than 0.6x10^{-2} (3sigma). We interpret the photometric excess around tau Cet as a possible signature of hot grains in the inner debris disk and demonstrate that a faint, physical or background, companion can be safely excluded. In addition, we measured both stellar angular diameters with an unprecedented accuracy: Theta_LD(tau Cet)= 2.015 +/- 0.011 mas and Theta_LD(eps Eri)=2.126 +/- 0.014 mas.Comment: 8 pages, 5 figures, to appear in Astronomy and Astrophysic
    corecore