30 research outputs found

    Quasi-fission reactions as a probe of nuclear viscosity

    Full text link
    Fission fragment mass and angular distributions were measured from the ^{64}Ni+^{197}Au reaction at 418 MeV and 383 MeV incident energy. A detailed data analysis was performed, using the one-body dissipation theory implemented in the code HICOL. The effect of the window and the wall friction on the experimental observables was investigated. Friction stronger than one-body was also considered. The mass and angular distributions were consistent with one-body dissipation. An evaporation code DIFHEAT coupled to HICOL was developed in order to predict reaction time scales required to describe available data on pre-scission neutron multiplicities. The multiplicity data were again consistent with one-body dissipation. The cross-sections for touch, capture and quasi-fission were also obtained.Comment: 25 pages REVTeX, 3 tables, 13 figures, submitted to Phys. Rev

    Metal Expansion Penetration on Concave Casting Surfaces of Grey Cast Iron Cylinder Heads

    No full text
    Cylinder heads have an extremely complex shape with large areas of concave casting surfaces. The concave casting surfaces are often associated with metal expansion penetration problems or other surface defects, e. g. surface shrinkage. The defects cause high production costs due to component rejection and increased fettling time. This report presents an investigation of the microstructure in grey cast iron close to the sand-metal interface affected by metal penetration in a complex shaped casting. The dominant penetration defect observed in the cylinder heads was expansion penetration. Even pre-solidification penetration and sand crack defects were observed. The microstructure found in the non penetrated areas is typical for solidification of grey iron cast in sand moulds

    The Influence of Inoculation on the Metal Expansion Penetration With Respect to the Primary and Eutectic Solidification

    No full text
    The mechanism of metal expansion penetration of grey cast iron components is dependent on both solidification anomalies at the metal – mould interface and the inclination of the sand mould to permit the metal liquid to penetrate between the sand grains. The present work utilizes the latest development of primary austenite inoculation in combination with classic eutectic inoculation to limit the metallurgical contribution to metal expansion penetration. A solid shell containing the primary austenite dendrite network constitutes the barrier between the liquid metal and mould interface. Inoculants of both the primaryand eutectic phase control the permeability of the dendrite network
    corecore