8 research outputs found

    Molecular structure, magnetic properties, cyclic voltammetry of the low-spin iron(III) Bis(4-ethylaniline) complex with the para -chloro substituted meso -tetraphenylporphyrin

    No full text
    International audienceIn this study, the preparation of a new iron(III) hexacoordinated metalloporphyrin namely the bis(4-ethylaniline){meso-tetra(para-chlorophenyl)porphyrinato}iron(III) triflate hemi-4-ethylaniline monohydrate with the formula [FeIII(TClPP)(PhEtNH2)2]SO3CF3‱1/2PhEtNH2‱H2O (I) was reported. This is the first example of an iron(III) metalloporphyrin bis(primary amine) with an aryl group adjacent to the amino group. This species was characterized by elemental, spectroscopic analysis including UV–visible and IR data, cyclic voltammetry, SQUID measurements and X-ray molecular structure. The mean equatorial distance between the iron(III) and the nitrogens of the porphyrin is appropriate for a low-spin (S = 1/2) iron(III) porphyrin complex. The magnetic data confirm the low-spin state of our ferric derivative while the cyclic voltammetry indicates a shift of the half potential E1/2[Fe(III)/Fe(II)] of complex (I) toward more negative value. In the crystal of (I), the [FeIII(TClPP)(PhEtNH2)2]+ ions, the triflate counterions and the water molecules are involved in a number of O__H⋯O, N__H⋯O, C–H⋯O and C__Hâ‹ŻÏ€ intermolecular interactions forming a three-dimension network

    New insights on the electronic, magnetic, electric and molecular structure of a bis-(4-cyanopyridine) iron(III) complex with the meso-tetrakis(4-methoxyphenyl)porphyrin

    No full text
    International audienceWe have successfully synthesized and characterized a new low-spin iron(III) bis(4-cyanopyridine) complex with a meso-porphyrin substituted in the para positions of the phenyls by the methoxy group, namely the bis(4-cyanopyridine)[(meso-tetrakis(4-metoxyphenylporphyrinato)]iron(III) trifluoromethanesulfonate chlorobenzene monosolvate complex with the formula [FeIII(TMPP)(4-CNpy)2]SO3CF3.C6H5Cl (I). This species was characterized through ultraviolet–visible, Fourier-transform infrared and Mössbauer spectroscopy as well as by SQUID magnetometry, cyclic voltammetry, and X-ray crystallography. These characterizations indicated that our synthetic heme model is a low-spin (S = 1/2) coordination compound and especially shows that the structural, electronic and the magnetic properties of complex (I) are closely dominated by the presence of the methoxy σ-donor group at the para positions of the meso-porphyrin

    Spectroscopic, Electrochemical, Magnetic and Structural Characterization of an Hexamethylenetetramine Co(II) Porphyrin Complex - Application in the Catalytic Degradation of Vat Yellow 1 Dye

    No full text
    International audienceIn this study, a new cobaltous-(hexamethylenetetramine) [meso-tetra(para-methoxyphenyl)porphyrin complex with the formula [CoII(TMPP)(HMTA)] (I) was synthesized. The molecular structure was confirmed in solution by 1H NMR spectroscopy and mass spectrometry methods, and the single crystal X-ray diffraction structure of (I) was determined at both room temperature and low temperature. This species was further characterized by infrared, UV-visible and fluorescence spectroscopies, magnetic susceptibility measurements and cyclic voltammetry. The chemical reactivity behavior was also assessed theoretically through Density Functional Theory (DFT) approach. Magnetic investigation indicates that the Co(II)-HMTA porphyrin (I) species at low temperature is a cobaltous low-spin (S~=~1/2) species while at high temperature complex (I) exhibits a spin-crossover low-spin (S~=~1/2) ↔ high-spin (S~=~3/2). The adsorption kinetic of the ``vat yellow 1 dye'' was carried out in aqueous solution at pH~=~6. The experimental results are better fitted using the pseudo second order model. Furthermore, complex (I) was tested as catalyst in the degradation of the vat yellow 1 dye using an aqueous H2O2 solution and by photodegradation under solar light
    corecore