149 research outputs found

    Mn-Containing Bioactive Glass-Ceramics: BMP-2-Mimetic Peptide Covalent Grafting Boosts Human-Osteoblast Proliferation and Mineral Deposition

    Get PDF
    The addition of Mn in bioceramic formulation is gaining interest in the field of bone implants. Mn activates human osteoblast (h-osteoblast) integrins, enhancing cell proliferation with a dose-dependent effect, whereas Mn-enriched glasses induce inhibition of Gram-negative or Gram-positive bacteria and fungi. In an effort to further optimize Mn-containing scaffolds' beneficial interaction with h-osteoblasts, a selective and specific covalent functionalization with a bioactive peptide was carried out. The anchoring of a peptide, mapped on the BMP-2 wrist epitope, to the scaffold was performed by a reaction between an aldehyde group of the peptide and the aminic groups of silanized Mn-containing bioceramic. SEM-EDX, FT-IR, and Raman studies confirmed the presence of the peptide grafted onto the scaffold. In in vitro assays, a significant improvement in h-osteoblast proliferation, gene expression, and calcium salt deposition after 7 days was detected in the functionalized Mn-containing bioceramic compared to the controls

    The protein phosphatase 1 regulator NIPP1 is essential for mammalian spermatogenesis

    Get PDF
    NIPP1 is one of the major nuclear interactors of protein phosphatase PP1. The deletion of NIPP1 in mice is early embryonic lethal, which has precluded functional studies in adult tissues. Hence, we have generated an inducible NIPP1 knockout model using a tamoxifen-inducible Cre recombinase transgene. The inactivation of the NIPP1 encoding alleles (Ppp1r8) in adult mice occurred very efficiently in testis and resulted in a gradual loss of germ cells, culminating in a Sertoli-cell only phenotype. Before the overt development of this phenotype Ppp1r8 -/- testis showed a decreased proliferation and survival capacity of cells of the spermatogenic lineage. A reduced proliferation was also detected after the tamoxifen-induced removal of NIPP1 from cultured testis slices and isolated germ cells enriched for undifferentiated spermatogonia, hinting at a testis-intrinsic defect. Consistent with the observed phenotype, RNA sequencing identified changes in the transcript levels of cell-cycle and apoptosis regulating genes in NIPP1-depleted testis. We conclude that NIPP1 is essential for mammalian spermatogenesis because it is indispensable for the proliferation and survival of progenitor germ cells, including (un)differentiated spermatogonia.publishe

    Gene expression profiling of rat spermatogonia and Sertoli cells reveals signaling pathways from stem cells to niche and testicular cancer cells to surrounding stroma

    Get PDF
    Background: Stem cells and their niches are studied in many systems, but mammalian germ stem cells (GSC) and their niches are still poorly understood. In rat testis, spermatogonia and undifferentiated Sertoli cells proliferate before puberty, but at puberty most spermatogonia enter spermatogenesis, and Sertoli cells differentiate to support this program. Thus, pre-pubertal spermatogonia might possess GSC potential and pre-pubertal Sertoli cells niche functions. We hypothesized that the different stem cell pools at pre-puberty and maturity provide a model for the identification of stem cell and niche-specific genes. We compared the transcript profiles of spermatogonia and Sertoli cells from pre-pubertal and pubertal rats and examined how these related to genes expressed in testicular cancers, which might originate from inappropriate communication between GSCs and Sertoli cells. Results: The pre-pubertal spermatogonia-specific gene set comprised known stem cell and spermatogonial stem cell (SSC) markers. Similarly, the pre-pubertal Sertoli cell-specific gene set comprised known niche gene transcripts. A large fraction of these specifically enriched transcripts encoded trans-membrane, extra-cellular, and secreted proteins highlighting stem cell to niche communication. Comparing selective gene sets established in this study with published gene expression data of testicular cancers and their stroma, we identified sets expressed genes shared between testicular tumors and pre-pubertal spermatogonia, and tumor stroma and pre-pubertal Sertoli cells with statistic significance. Conclusions: Our data suggest that SSC and their niche specifically express complementary factors for cell communication and that the same factors might be implicated in the communication between tumor cells and their micro-enviroment in testicular cancer

    Epigenetic Mechanisms Regulate Stem Cell Expressed Genes Pou5f1 and Gfra1 in a Male Germ Cell Line

    Get PDF
    Male fertility is declining and an underlying cause may be due to environment-epigenetic interactions in developing sperm, yet nothing is known of how the epigenome controls gene expression in sperm development. Histone methylation and acetylation are dynamically regulated in spermatogenesis and are sensitive to the environment. Our objectives were to determine how histone H3 methylation and acetylation contribute to the regulation of key genes in spermatogenesis. A germ cell line, GC-1, was exposed to either the control, or the chromatin modifying drugs tranylcypromine (T), an inhibitor of the histone H3 demethylase KDM1 (lysine specific demethylase 1), or trichostatin (TSA), an inhibitor of histone deacetylases, (HDAC). Quantitative PCR (qPCR) was used to identify genes that were sensitive to treatment. As a control for specificity the Myod1 (myogenic differentiation 1) gene was analyzed. Chromatin immunoprecipitation (ChIP) followed by qPCR was used to measure histone H3 methylation and acetylation at the promoters of target genes and the control, Myod1. Remarkably, the chromatin modifying treatment specifically induced the expression of spermatogonia expressed genes Pou5f1 and Gfra1. ChIP-qPCR revealed that induction of gene expression was associated with a gain in gene activating histone H3 methylation and acetylation in Pou5f1 and Gfra1 promoters, whereas CpG DNA methylation was not affected. Our data implicate a critical role for histone H3 methylation and acetylation in the regulation of genes expressed by spermatogonia – here, predominantly mediated by HDAC-containing protein complexes

    Self-assembling peptides: correlation among sequence, secondary structure in solution and film formation

    No full text
    Peptides of alternating charge and hydrophobic amino acids have a tendency to adopt unusually stable b-sheet structures that can form insoluble macroscopic aggregates under physiological conditions. In this study, analogues of a well-known self-assembling peptide, characterized by the same polar/nonpolar periodicity but with different residues, were designed to study the relationship between sequence, conformation in solution and film-forming capacity in saline solution. Peptide conformation, evaluated by circular dichroism, correlated with film forming capacity observed by inverted optical microscopy after addition of saline solution and subsequent drying. We found that polar/nonpolar periodicity of several analogues is not criterion enough to induce b-sheet and thus film formation and that conformations different from b-sheet also allow self-assemblage. Furthermore, addition of the short adhesive sequence RGD to a known self-assembling sequence was shown to not prevent the self-assembling process. This finding might prove useful for the design of biomimetic scaffolds

    Thymosin-beta 4, and Human Vitronectin peptides Grafted to Collagen Tune Adhesion or VEGF Gene Expression in Human Cell Lines

    No full text
    In order to improve collagen bioactivity for regenerative medicine approaches, thymosin-beta 4 (T beta 4P) and Human Vitronectin (HVP) derived peptides are grafted to collagen by thiol-ene Michael addition. T beta 4P and HVP are known to exert a pro-angiogenic and a pro-adhesive activity respectively and HVP is involved in osteogenesis promotion. The ability of these peptides to increase collagen cell adhesion and angiogenesis properties is assessed on human cell lines. In particular, HVP-grafted collagen increased human osteoblast adhesion and cell proliferation: after 24 h, both adhesion and proliferation roughly showed a 4-fold increase, if compared to pristine collagen. T beta 4P-grafted collagen promotes Vascular Endothelial Growth Factor (VEGF) gene expression in human vascular cell lines by more than 7 times. These results suggest that HVP-grafted collagen may be an interesting biomaterial for bone tissue regeneration, while T beta 4P-grafted collagen is useful for angiogenesis promotion
    corecore