30 research outputs found

    Transmission of scrapie prions to primate after an extended silent incubation period

    Get PDF
    Citation: Comoy, E. E., Mikol, J., Luccantoni-Freire, S., Correia, E., Lescoutra-Etchegaray, N., Durand, V., . . . Deslys, J. P. (2015). Transmission of scrapie prions to primate after an extended silent incubation period. Scientific Reports, 5. doi:10.1038/srep11573Classical bovine spongiform encephalopathy (c-BSE) is the only animal prion disease reputed to be zoonotic, causing variant Creutzfeldt-Jakob disease (vCJD) in humans and having guided protective measures for animal and human health against animal prion diseases. Recently, partial transmissions to humanized mice showed that the zoonotic potential of scrapie might be similar to c-BSE. We here report the direct transmission of a natural classical scrapie isolate to cynomolgus macaque, a highly relevant model for human prion diseases, after a 10-year silent incubation period, with features similar to those reported for human cases of sporadic CJD. Scrapie is thus actually transmissible to primates with incubation periods compatible with their life expectancy, although fourfold longer than BSE. Long-term experimental transmission studies are necessary to better assess the zoonotic potential of other prion diseases with high prevalence, notably Chronic Wasting Disease of deer and elk and atypical/Nor98 scrapie

    Evaluation of the zoonotic potential of transmissible mink encephalopathy

    Get PDF
    Successful transmission of Transmissible Mink Encephalopathy (TME) to cattle supports the bovine hypothesis for the still controversial origin of TME outbreaks. Human and primate susceptibility to classical Bovine Spongiform Encephalopathy (c-BSE) and the transmissibility of L-type BSE to macaques indicate a low cattle-to-primate species barrier. We therefore evaluated the zoonotic potential of cattle-adapted TME. In less than two years, this strain induced in cynomolgus macaques a neurological disease similar to L-BSE but distinct from c-BSE. TME derived from another donor species (raccoon) induced a similar disease with even shorter incubation periods. L-BSE and cattle-adapted TME were also transmissible to transgenic mice expressing human prion protein (PrP). Secondary transmissions to transgenic mice expressing bovine PrP maintained the features of the three tested bovine strains (cattle TME, c-BSE and L-BSE) regardless of intermediate host. Thus, TME is the third animal prion strain transmissible to both macaques and humanized transgenic mice, suggesting zoonotic potentials that should be considered in the risk analysis of animal prion diseases for human health. Moreover, the similarities between TME and L-BSE are highly suggestive of a link between these strains, and therefore the possible presence of L-BSE for many decades prior to its identification in USA and Europe. © 2013 by the authors; licensee MDPI, Basel, Switzerland

    Cellular Prion Protein Expression Is Not Regulated by the Alzheimer's Amyloid Precursor Protein Intracellular Domain

    Get PDF
    There is increasing evidence of molecular and cellular links between Alzheimer's disease (AD) and prion diseases. The cellular prion protein, PrPC, modulates the post-translational processing of the AD amyloid precursor protein (APP), through its inhibition of the β-secretase BACE1, and oligomers of amyloid-β bind to PrPC which may mediate amyloid-β neurotoxicity. In addition, the APP intracellular domain (AICD), which acts as a transcriptional regulator, has been reported to control the expression of PrPC. Through the use of transgenic mice, cell culture models and manipulation of APP expression and processing, this study aimed to clarify the role of AICD in regulating PrPC. Over-expression of the three major isoforms of human APP (APP695, APP751 and APP770) in cultured neuronal and non-neuronal cells had no effect on the level of endogenous PrPC. Furthermore, analysis of brain tissue from transgenic mice over-expressing either wild type or familial AD associated mutant human APP revealed unaltered PrPC levels. Knockdown of endogenous APP expression in cells by siRNA or inhibition of γ-secretase activity also had no effect on PrPC levels. Overall, we did not detect any significant difference in the expression of PrPC in any of the cell or animal-based paradigms considered, indicating that the control of cellular PrPC levels by AICD is not as straightforward as previously suggested

    Prion infection-impaired functional blocks identified by proteomics enlighten the targets and the curing pathways of an anti-prion drug.

    No full text
    Prion-induced neurodegeneration results from multiple cellular alterations among which the accumulation of a modified form of the host protein PrP is but a hallmark. Drug treatments need understanding of underlying mechanisms. Proteomics allows getting a comprehensive view of perturbations leading to neuronal death. Heparan sulfate mimetics has proved to be efficient to clear scrapie protein in cultured cells and in animals. To investigate the mechanisms of drug attack, protein profiles of the neuronal cell line GT1 and its chronically Chandler strain infected counterpart were compared, either in steady state cultures or after a 4-day drug treatment. Differentially expressed proteins were associated into functional blocks relevant to neurodegenerative diseases. Protein structure repair and modification, proteolysis, cell shape and energy/oxidation players were affected by infection, in agreement with prion biology. Unexpectedly, novel affected blocks related to translation, nucleus structure and DNA replication were unravelled displaying commonalities with proliferative processes. The drug had a double action in infected cells by reversing protein levels back to normal in some blocks and by heightening survival functions in others. This study emphasizes the interest of a proteomic approach to unravel novel networks involved in prion infection and curing

    Different isoforms of the non-integrin laminin receptor are present in mouse brain and bind PrP

    Get PDF
    The prion protein (PrP) plays a central role in prion diseases, and identifying its cellular receptor appears to be of crucial interest. We previously showed in the yeast twohybrid system that PrP interacts with the 37 kDa precursor (LRP) of the high affinity 67 kDa laminin receptor (LR), which acts as the cellular receptor of PrP in cellular models. However, among the various isoforms of the receptor that have been identified so far, those which are present in the central nervous system and which bind PrP are still unknown. In this study, we have purified mouse brain fractions enriched in the laminin receptor and have performed overlay assays in order to identify those isoforms that interact with the prion protein. We demonstrate (i) the presence, in mouse brain, of several isoforms of the LRP/LR corresponding to different maturation states of the receptor (44, 60, 67 and 220 kDa) and (ii) the binding of all of these isoforms to PrP. Our data strongly support a physiological role of the laminin receptor/PrP interaction in the brain and highlight its relevance for transmissible spongiform encephalopathies
    corecore