30 research outputs found

    High-density genetic map using whole-genome resequencing for fine mapping and candidate gene discovery for disease resistance in peanut

    Get PDF
    Whole‐genome resequencing (WGRS) of mapping populations has facilitated development of high‐density genetic maps essential for fine mapping and candidate gene discovery for traits of interest in crop species. Leaf spots, including early leaf spot (ELS) and late leaf spot (LLS), and Tomato spotted wilt virus (TSWV) are devastating diseases in peanut causing significant yield loss. We generated WGRS data on a recombinant inbred line population, developed a SNP‐based high‐density genetic map, and conducted fine mapping, candidate gene discovery and marker validation for ELS, LLS and TSWV. The first sequence‐based high‐density map was constructed with 8869 SNPs assigned to 20 linkage groups, representing 20 chromosomes, for the ‘T’ population (Tifrunner × GT‐C20) with a map length of 3120 cM and an average distance of 1.45 cM. The quantitative trait locus (QTL) analysis using high‐density genetic map and multiple season phenotyping data identified 35 main‐effect QTLs with phenotypic variation explained (PVE) from 6.32% to 47.63%. Among major‐effect QTLs mapped, there were two QTLs for ELS on B05 with 47.42% PVE and B03 with 47.38% PVE, two QTLs for LLS on A05 with 47.63% and B03 with 34.03% PVE and one QTL for TSWV on B09 with 40.71% PVE. The epistasis and environment interaction analyses identified significant environmental effects on these traits. The identified QTL regions had disease resistance genes including R‐genes and transcription factors. KASP markers were developed for major QTLs and validated in the population and are ready for further deployment in genomics‐assisted breeding in peanut

    Aging-related defects in macrophage function are driven by MYC and USF1 transcriptional programs

    Get PDF
    Macrophages are central innate immune cells whose function declines with age. The molecular mechanisms underlying age-related changes remain poorly understood, particularly in human macrophages. We report a substantial reduction in phagocytosis, migration, and chemotaxis in human monocyte-derived macrophages (MDMs) from older (>50 years old) compared with younger (18–30 years old) donors, alongside downregulation of transcription factors MYC and USF1. In MDMs from young donors, knockdown of MYC or USF1 decreases phagocytosis and chemotaxis and alters the expression of associated genes, alongside adhesion and extracellular matrix remodeling. A concordant dysregulation of MYC and USF1 target genes is also seen in MDMs from older donors. Furthermore, older age and loss of either MYC or USF1 in MDMs leads to an increased cell size, altered morphology, and reduced actin content. Together, these results define MYC and USF1 as key drivers of MDM age-related functional decline and identify downstream targets to improve macrophage function in aging

    Anaesthetic management of neonate with giant occipital meningoencephalocele: Case report

    Get PDF
    Meningoencephalocele is herniation of cerebrospinal fluid, brain tissue and meninges through the skull defect. The anaesthetic management of occipital meningoencephalocele is challenging because of the difficulty in securing airway, prone position, blood loss and, perioperative care. The two major aims of the anaesthesiologists while caring for children with occipital encephalocoele intraoperatively are to avoid premature rupture of the encephalocoele and to manage a possible difficult airway due to restricted neck movement and inability to achieve optimal position for intubation of the trachea. We report a case of giant occipital meningoencephalocele presented for surgical excision. Perioperative management of patients with giant meningoencephalocele may be challenging for both anaesthesiologist and neurosurgeon. These patients must be managed closely with an interdisciplinary approach
    corecore