113 research outputs found
Opportunities for refinement in neuroscience: Indicators of wellness and post-operative pain in laboratory macaques
Being able to assess pain in nonhuman primates undergoing biomedical procedures is important for preventing and alleviating pain, and for developing better guidelines to minimise the impacts of research on welfare in line with the 3Rs principle of Refinement. Nonhuman primates are routinely used biomedical models however it remains challenging to recognise negative states, including pain, in these animals. This study aimed to identify behavioural and facial changes that could be used as pain or general wellness indicators in the rhesus macaque (Macaca mulatta). Thirty-six macaques scheduled for planned neuroscience procedures were opportunistically monitored at four times: Pre-Operative (PreOp), Post-Operative (PostOp) once the effects of anaesthesia had dissipated, Pre-Analgesia (PreAn) on the subsequent morning prior to repeating routine analgesic treatment, and Post-Analgesia (PostAn) following administration of analgesia. Pain states were expected to be absent in PreOp, moderate in PreAn, and mild or absent in PostOp and PostAn when analgesia had been administered. Three potential pain indicators were identified: lip tightening and chewing, which were most likely to occur in PreAn, and running which was least likely in PreAn. Arboreal behaviour indicated general wellness, while half-closed eyes, leaning of the head or body shaking indicated the opposite. Despite considerable individual variation, behaviour and facial expressions could offer important indicators of pain and wellness and should be routinely quantified, and appropriate interventions applied to prevent or alleviate pain, and promote positive welfare
Performance of HPGe Detectors in High Magnetic Fields
A new generation of high-resolution hypernuclear gamma$-spectroscopy
experiments with high-purity germanium detectors (HPGe) are presently designed
at the FINUDA spectrometer at DAPhiNE, the Frascati phi-factory, and at PANDA,
the antiproton proton hadron spectrometer at the future FAIR facility. Both,
the FINUDA and PANDA spectrometers are built around the target region covering
a large solid angle. To maximise the detection efficiency the HPGe detectors
have to be located near the target, and therefore they have to be operated in
strong magnetic fields B ~ 1 T. The performance of HPGe detectors in such an
environment has not been well investigated so far. In the present work VEGA and
EUROBALL Cluster HPGe detectors were tested in the field provided by the ALADiN
magnet at GSI. No significant degradation of the energy resolution was found,
and a change in the rise time distribution of the pulses from preamplifiers was
observed. A correlation between rise time and pulse height was observed and is
used to correct the measured energy, recovering the energy resolution almost
completely. Moreover, no problems in the electronics due to the magnetic field
were observed.Comment: submitted to Nucl. Instrum. Meth. Phys. Res. A, LaTeX, 19 pages, 9
figure
Auditory laterality in a nocturnal, fossorial marsupial (Lasiorhinus latifrons) in response to bilateral stimuli
Behavioural lateralisation is evident across most animal taxa, although few marsupial and no fossorial species have been studied. Twelve wombats (Lasiorhinus latifrons) were bilaterally presented with eight sounds from different contexts (threat, neutral, food) to test for auditory laterality. Head turns were recorded prior to and immediately following sound presentation. Behaviour was recorded for 150 seconds after presentation. Although sound differentiation was evident by the amount of exploration, vigilance and grooming performed after different sound types, this did not result in different patterns of head turn direction. Similarly, left-right proportions of head turns, walking events and food approaches in the post-sound period were comparable across sound types. A comparison of head turns performed before and after sound showed a significant change in turn direction (χ2 1 = 10.65, P = 0.001) from a left preference during the pre-sound period (mean 58% left head turns, CI 49-66%) to a right preference in the post-sound (mean 43% left head turns, CI 40-45%). This provides evidence of a right auditory bias in response to the presentation of the sound. This study therefore demonstrates that laterality is evident in southern hairy-nosed wombats in response to a sound stimulus, although side biases were not altered by sounds of varying context
A hybrid radiation detector for simultaneous spatial and temporal dosimetry
In this feasibility study an organic plastic scintillator is calibrated against ionisation chamber measurements and then embedded in a polymer gel dosimeter to obtain a quasi-4D experimental measurement of a radiation field. This hybrid dosimeter was irradiated with a linear accelerator, with temporal measurements of the dose rate being acquired by the scintillator and spatial measurements acquired with the gel dosimeter. The detectors employed in this work are radiologically equivalent; and we show that neither detector perturbs the intensity of the radiation field of the other. By employing these detectors in concert, spatial and temporal variations in the radiation intensity can now be detected and gel dosimeters can be calibrated for absolute dose from a single irradiation
Gamma-ray Tracking with Segmented HPGe Detectors
This paper gives a brief overview of the technical progress that can be achieved with the newly available segmented HPGe detectors. Gamma-ray tracking detectors are a new generation of HPGe detectors which are currently being developed to improve significantly the efficiency and resolving power of the 4 … germanium detectors arrays for high-precision ∞-ray spectroscopy. They consist of highly segmented HPGe detectors associated with fast digital front-end electronics. Through the pulse-shape analysis of the signals it is possible to extract the energy, timing and spatial information on the few interactions a ∞-ray undergoes in the HPGe detector. The tracks of the ∞-rays in the HPGe detector can then be reconstructed in three dimensions based on the Compton scattering formula. Such a detector has been used for the first time during an in-beam experiment. The ∞-decay of the Coulomb excitation of a 56 Fe nucleus was measured with the highly segmented MARS prototype positioned at 135 degree. The energy resolution has been improved by a factor of 3 as compared to standard HPGe detectors due to very precise Doppler correction based on knowledge of the ∞-ray track. I Introduction The future facilities for radioactive beams will allow, for the first time, the exploration of a new large area of the nuclear landscape. In connection with the study of the ∞-radiation, it is important to point out that the intensity of such radioactive beams is expected to be much smaller than that of stable beams, Doppler Effects in many experiments are expected to be much stronger and an intense background of X-rays could be present. Consequently, a new generation of powerful HPGe arrays with segmented detectors is being designed. Both in USA and in Europe several projects, based on segmented HPGe detectors, have already started and are in an advanced status of realization. The objective of the more recent R&D efforts is to improve the total efficiency by removing the BGO shields without affecting the P/T ratio with the use of the tracking technique, namely the reconstruction of the ∞-ray path to identify the ∞-incident direction (for the Doppler correction), the removal of the background and to check whether or not the ∞ was fully absorbed in the array. Such development implies unprecedented R&D efforts where completely new technology has to be applied, tested or developed in all the constituents of an HPGe array, from the detector to the front-end electronics. The typical feature of the energy deposition of a ∞-ray is that of interacting in a limited number of positions. ∞-tracking of this hits is a very challenging and ambitious task. First, one has to identify, isolate and localize each hit inside a segmented detector with pulse shape analysis based on the study of the physical mechanism of the pulse generation or with Artificial Intelligence techniques (like Neural Networks or Genetic Algorithm [1]) of the direct and induced electrical pulses produced by every interacting ∞-rays. Second, a tracking algorithm has to reconstruct the real trajectory from the list of interaction points through statistical techniques. The result is expected to be the complete reconstruction of the track of the incident ∞, namely the complete description of the interacting ∞-ray. Worldwide efforts have been done using simulations and proof-of-principle measurements and turned out to be successful. The feasibility of the entire process of ∞ray tracking is demonstrated in this paper based on an experiment, done at the LNL in Italy, using the MARS prototype detector
Deducing the \u3csup\u3e237\u3c/sup\u3eU(\u3cem\u3en,f\u3c/em\u3e) Cross Section Using the Surrogate Ratio Method
We have deduced the cross section for 237U(n, f) over an equivalent neutron energy range from 0 to 20 MeV using the surrogate ratio method. A 55 MeV4He beam from the 88 inch cyclotron at Lawrence Berkeley National Laboratory was used to induce fission in the following reactions: 238U(α, αf) and 236U(α, αf). The 238U reaction was a surrogate for 237U(n, f), and the 236U reaction was used as a surrogate for 235U(n, f). Scattered α particles were detected in a fully depleted segmented silicon telescope array over an angle range of 35° to 60° with respect to the beam axis. The fission fragments were detected in a third independent silicon detector located at backward angles between 106° and 131°
Effects of simulated motion frequency related to road quality on the welfare and recovery of transported largemouth bass (Micropterus salmoides)
Farmed fish are commonly transported between various facilities by road vehicles, resulting in inevitable exposure to uncontrolled and oscillatory movements, likely exacerbated by poor road conditions. The effect of road quality on livestock has been studied during live transport, but research into the impact of motion has been rarely examined with fish. This study investigated the effects of different motion frequencies related to road quality on the welfare and recovery of largemouth bass (Micropterus salmoides). Three motion frequencies were examined in this study using a non-transported control, a simulated “rough” transport treatment, and a simulated “smooth” transport treatment. Live transport was carried out for 3 h using a motion simulation platform with a movement frequency of 1.0 and 1.8 Hz for the smooth and rough treatment, respectively. Control fish were kept in static tanks for the same duration to obtain basal physiology, behaviour, and flesh quality. Water parameters were measured before and immediately after simulated transport in all groups. Behavioural, physiological, and muscle parameters were measured before simulated transport, as well as 0 h and 24 h post-transport. Total ammonia nitrogen levels increased in all treatments over time (p < 0.001), with significantly higher values observed in transported groups. Non-transported fish displayed increased biting (p = 0.025), chasing (p = 0.010), and threatening (p = 0.003) behaviour over time, suggesting potential fasting and confinement stress. During the post-transport period, a significant main effect of treatment and timepoint on freezing and thigmotaxis behaviour was found, with an increase in these behaviours over time and significantly higher levels between control and smooth transported groups. Nevertheless, aggressive behaviours were affected only by timepoint, with an increase observed between 0 h and 24 h post-transport. Neither plasma biochemical indicators nor flesh quality differed between treatments, while a significant effect of timepoint was found for plasma glucose (p = 0.045), plasma lactate (p = 0.021), and muscle pH (p < 0.001). Our study consequently did not find rough transport to impact fish physiology and flesh quality more than smooth transport, but behavioural results suggest there was a strong combined effect of fasting, exposure to a novel environment, and confinement over time. Future research would be valuable to study these effects on the welfare of transported bass, allowing for a longer recovery time and the use of potential mitigation options such as environmental enrichment
- …