76 research outputs found

    Mapping the physico-chemical properties of mineral dust in western Africa: mineralogical composition

    Get PDF
    International audienceIn the last few years, several ground-based and air-borne field campaigns have allowed the exploration of theproperties and impacts of mineral dust in western Africa,one of the major emission and transport areas worldwide.In this paper, we explore the synthesis of these observationsto provide a large-scale quantitative view of the mineralogi-cal composition and its variability according to source regionand time after transport.This work reveals that mineral dust in western Africa is amixture of clays, quartz, iron and titanium oxides, represent-ing at least 92 % of the dust mass. Calcite ranged between0.3 and 8.4 % of the dust mass, depending on the origin. Ourdata do not show a systematic dependence of the dust min-eralogical composition on origin; this is to be the case as, inmost of the instances, the data represent the composition ofthe atmospheric burden after 1–2 days after emission, whenair masses mix and give rise to a more uniform dust load.This has implications for the representation of the mineraldust composition in regional and global circulation modelsand in satellite retrievals.Iron oxides account for 58±7 % of the mass of elementalFe and for between 2 and 5 % of the dust mass. Most of themare composed of goethite, representing between 52 and 78 %of the iron oxide mass. We estimate that titanium oxides ac-count for 1–2 % of the dust mass, depending on whether thedust is of Saharan or Sahelian origin.The mineralogical composition is a critical parameter forestimating the radiative and biogeochemical impact of min-eral dust. The results regarding dust composition have been used to estimate the optical properties as well as the iron frac-tional solubility of Saharan and Sahelian dust.Data presented in this paper are provided in numeri-cal form upon email request while they are being turnedinto a public database, the Dust-Mapped Archived Proper-ties (DUST-MAP), which is an open repository for compo-sitional data from other source regions in Africa and world-wide

    Supplement of Wet deposition in the remote western and central Mediterranean as a source of trace metals to surface seawater [Dataset]

    Get PDF
    3 pages. -- Figure S1: Atmospheric conditions during rain ION period, the 29 May 2017. -- Figure S2: Atmopsheric conditions during rain FAST period, the 05 June 2017Peer reviewe

    Processus de dissolution des aérosols atmosphériques au sein des gouttes d'eau nuageuses

    Get PDF
    Gérard Sarazin Président du Jury Guy Cautenet Rapporteur Christian George Rapporteur Francis Grousset Examinateur Jürg Hoigné ExaminateurClouds affect both climate via the role they play in the Earth's radiation balance and tropospheric chemistry since they are efficient reaction media for chemical transformation of soluble species. Cloud droplets are formed in the atmosphere by condensation of water vapour onto aerosol particles, the cloud condensation nuclei (CCN). The water soluble fraction of these CCN governs the cloud microphysic, which is the paramount factor playing on the radiative properties of clouds. Moreover, this soluble fraction is the source of species imply in the oxidation/reduction reactions in the aqueous phase. Thus, it is of particular importance to understand the process controlling the solubilisation of aerosols in the cloud droplets. The main purpose of this work is to investigate experimentally and theoretically the dissolution of particles incorporated in the aqueous phase. From the studies conducted up to now, we have identify several factors playing on the dissolution reaction of aerosols. However, the quantification of the effects of these factors is difficult since the current means of study are not adapted to the complexity of cloud systems. First, this work consisted to perform a experimental system, compound by an open flow reactor, enabling to follow the kinetic of dissolution in conditions representative of cloud. This experimental device is used to a systematic characterisation of the known factors playing on the dissolution, i.e. pH, aerosol nature, aerosol weathering... and also for the identification and the quantification of the effects of other factors: ionic strength, acid nature, clouds processes. These experiments gave quantitative results, which are used to elaborate a simple model of aerosol dissolution in the aqueous phase. This model considers the main factors playing on the dissolution and results in a general mechanism of aerosol dissolution extrapolated to the cloud droplets.Les nuages sont des éléments essentiels de notre atmosphère qui agissent à la fois sur le bilan radiatif terrestre et sur sa capacité oxydante en transformant chimiquement une grande variété d'espèces solubles. Ces nuages se forment par la condensation de vapeur d'eau sur des particules d'aérosols, appelés noyaux de condensation. La fraction soluble de ces particules conditionne l'hygroscopie des particules et détermine ainsi la taille des gouttes du nuage. Ce paramètre est déterminant pour définir les propriétés optiques des nuages. De plus, la dissolution des particules est la source primaire en phase aqueuse de différentes espèces dont les métaux de transition. Ces éléments sont impliqués dans divers processus d'oxydoréduction et en particuliers dans les processus responsables de la formation des pluies acides. Il est par conséquent très important de connaître, de manière fiable, les processus aboutissant à la solubilisation de l'aérosol dans les gouttes d'eau nuageuses. Le principal objectif de ce travail a donc été de développer un outil expérimental puis une approche de modélisation afin de comprendre et de simuler la dissolution des particules piégées dans une phase nuageuse liquide. Dans un premier temps, ce travail a consisté à mettre en oeuvre un dispositif expérimental, comportant un réacteur de dissolution en circuit ouvert, qui permet de suivre la cinétique de dissolution dans des conditions proches des conditions nuageuses. Cet outil expérimental a ensuite été utilisé pour une caractérisation systématique des différents facteurs d'influence recensés jusqu'alors sur la dissolution, c'est à dire le pH, la nature des aérosols, leur degré d'altération... mais également sur des facteurs jusqu'alors non expérimentés que sont la force ionique, la nature des acides et les cycles d'évapocondensation nuageuse. Les expériences de dissolution menées sous ces différentes conditions nuageuses ont permis de mettre en avant et de quantifier l'effet important des ions H+ et OH- sur la dissolution, ainsi que du degré de solubilisation de la particule. Ces observations ont ensuite été utilisées pour l'élaboration d'un mécanisme de dissolution des particules en phase aqueuse. Une quantification de ce mécanisme a enfin été réalisée en paramétrisant les principaux facteurs impliqués dans la dissolution. La comparaison des résultats calculés et expérimentaux montre une assez bonne adéquation, validant la paramétrisation effectuée. Finalement ce travail permet d'apporter des informations qualitatives et surtout quantitatives des interactions entre l'eau et les particules d'aérosols qui étaient encore manquantes et montrent notamment l'importance du processus de dissolution pour comprendre le rôle des aérosols dans l'implication climatique et chimique des nuages

    Processus de dissolution des aérosols atmosphériques au sein des gouttes d'eau nuageuses

    No full text
    Gérard Sarazin Président du Jury Guy Cautenet Rapporteur Christian George Rapporteur Francis Grousset Examinateur Jürg Hoigné ExaminateurClouds affect both climate via the role they play in the Earth's radiation balance and tropospheric chemistry since they are efficient reaction media for chemical transformation of soluble species. Cloud droplets are formed in the atmosphere by condensation of water vapour onto aerosol particles, the cloud condensation nuclei (CCN). The water soluble fraction of these CCN governs the cloud microphysic, which is the paramount factor playing on the radiative properties of clouds. Moreover, this soluble fraction is the source of species imply in the oxidation/reduction reactions in the aqueous phase. Thus, it is of particular importance to understand the process controlling the solubilisation of aerosols in the cloud droplets. The main purpose of this work is to investigate experimentally and theoretically the dissolution of particles incorporated in the aqueous phase. From the studies conducted up to now, we have identify several factors playing on the dissolution reaction of aerosols. However, the quantification of the effects of these factors is difficult since the current means of study are not adapted to the complexity of cloud systems. First, this work consisted to perform a experimental system, compound by an open flow reactor, enabling to follow the kinetic of dissolution in conditions representative of cloud. This experimental device is used to a systematic characterisation of the known factors playing on the dissolution, i.e. pH, aerosol nature, aerosol weathering... and also for the identification and the quantification of the effects of other factors: ionic strength, acid nature, clouds processes. These experiments gave quantitative results, which are used to elaborate a simple model of aerosol dissolution in the aqueous phase. This model considers the main factors playing on the dissolution and results in a general mechanism of aerosol dissolution extrapolated to the cloud droplets.Les nuages sont des éléments essentiels de notre atmosphère qui agissent à la fois sur le bilan radiatif terrestre et sur sa capacité oxydante en transformant chimiquement une grande variété d'espèces solubles. Ces nuages se forment par la condensation de vapeur d'eau sur des particules d'aérosols, appelés noyaux de condensation. La fraction soluble de ces particules conditionne l'hygroscopie des particules et détermine ainsi la taille des gouttes du nuage. Ce paramètre est déterminant pour définir les propriétés optiques des nuages. De plus, la dissolution des particules est la source primaire en phase aqueuse de différentes espèces dont les métaux de transition. Ces éléments sont impliqués dans divers processus d'oxydoréduction et en particuliers dans les processus responsables de la formation des pluies acides. Il est par conséquent très important de connaître, de manière fiable, les processus aboutissant à la solubilisation de l'aérosol dans les gouttes d'eau nuageuses. Le principal objectif de ce travail a donc été de développer un outil expérimental puis une approche de modélisation afin de comprendre et de simuler la dissolution des particules piégées dans une phase nuageuse liquide. Dans un premier temps, ce travail a consisté à mettre en oeuvre un dispositif expérimental, comportant un réacteur de dissolution en circuit ouvert, qui permet de suivre la cinétique de dissolution dans des conditions proches des conditions nuageuses. Cet outil expérimental a ensuite été utilisé pour une caractérisation systématique des différents facteurs d'influence recensés jusqu'alors sur la dissolution, c'est à dire le pH, la nature des aérosols, leur degré d'altération... mais également sur des facteurs jusqu'alors non expérimentés que sont la force ionique, la nature des acides et les cycles d'évapocondensation nuageuse. Les expériences de dissolution menées sous ces différentes conditions nuageuses ont permis de mettre en avant et de quantifier l'effet important des ions H+ et OH- sur la dissolution, ainsi que du degré de solubilisation de la particule. Ces observations ont ensuite été utilisées pour l'élaboration d'un mécanisme de dissolution des particules en phase aqueuse. Une quantification de ce mécanisme a enfin été réalisée en paramétrisant les principaux facteurs impliqués dans la dissolution. La comparaison des résultats calculés et expérimentaux montre une assez bonne adéquation, validant la paramétrisation effectuée. Finalement ce travail permet d'apporter des informations qualitatives et surtout quantitatives des interactions entre l'eau et les particules d'aérosols qui étaient encore manquantes et montrent notamment l'importance du processus de dissolution pour comprendre le rôle des aérosols dans l'implication climatique et chimique des nuages

    Les particules atmospheriques

    No full text
    L’atmosphère est composée non seulement de gaz – dont les plus importants sont de loin l’azote et l’oxygène – mais également de particules solides et liquides en suspension dans l’air. Celles-ci, de composition chimique et de taille variées, contribuent de façon importante à la pollution atmosphérique observée dans différentes régions du monde. À ce titre, les particules sont très étudiées depuis quelques années afin de mieux comprendre le rôle qu’elles jouent sur l’environnement et dans l’évolution du climat. Certaines d’entre elles, les plus petites – moins de 10 micromètres (μm) –, sont couramment appelées particules fines et ont des effets nocifs spécifiques sur la santé humaine. Même si un grand nombre de particules est d’origine naturelle, la majorité des particules fines est issue d’activités humaines, comme le trafic automobile, le chauffage résidentiel ou encore les activités agricoles et industrielles. Dans les grandes villes, ces particules fines, responsables d’une mauvaise qualité de l’air, font l’objet d’une surveillance quotidienne et des mesures de restriction (circulation différenciée, suspension des activités industrielles très émettrices…) sont régulièrement prises en cas de dépassement du seuil d’alerte qui est de 80 microgrammes par mètre cube (μg/m3) en moyenne pour vingt-quatre heures.26

    Factors influencing aerosol solubility during cloud process

    No full text
    International audienceThe water-soluble fraction of an aerosol determines its chemical and physical properties and also its behaviour. The origin of the aerosol and its atmospheric transport influence its solubility. Cloud process simulations have been conducted on both Saharan and anthropogenic aerosols. The rate of solubilisation was followed for native and processed aerosol particles; it is controlled by the pH variations due to release of acids or bases. It appears that one condensation/evaporation cycle increases the solubility of aerosol particles. Increasing the number of cloud process simulations does not affect the solubility profile. The solubility depends only on the conditions of the last cloud cycle and, in particular, on the factor controlling pH during this process

    Factors influencing aerosol solubility during cloud process

    No full text
    International audienceThe water-soluble fraction of an aerosol determines its chemical and physical properties and also its behaviour. The origin of the aerosol and its atmospheric transport influence its solubility. Cloud process simulations have been conducted on both Saharan and anthropogenic aerosols. The rate of solubilisation was followed for native and processed aerosol particles; it is controlled by the pH variations due to release of acids or bases. It appears that one condensation/evaporation cycle increases the solubility of aerosol particles. Increasing the number of cloud process simulations does not affect the solubility profile. The solubility depends only on the conditions of the last cloud cycle and, in particular, on the factor controlling pH during this process
    corecore