190 research outputs found

    The Role of Family-led Disability Organizations in Supporting Families with Hearing-Related Concerns

    Get PDF
    A survey was conducted with state level chapters from Family Voices, Parent Training and Information Centers, and Parent–to-Parent USA to understand their current activities support families of children with hearing-related concerns and to identify gaps in their ability to support families of children who are D/HH. these organizations reported that they are contacted with parent requests for information in regard to family support opportunities, early intervention, referral sources pertaining to hearing concerns, financial help, and providing information about legal rights. Results showed that the greatest challenges for these organizations were related to needing to connect families to financial resources pertaining to hearing-related needs, engaging families of children who are deaf/hard of hearing in their organization\u27s activities, having resources available in other languages, and 4) identifying pediatric providers that serve D/HH children. Potential ways to strengthen the capacity of these organizations to meet the needs of families with hearing-related concerns as well as increasing their awareness of partnerships with the EHDI system are discussed

    Impaired exercise training-induced muscle fiber hypertrophy and Akt/mTOR pathway activation in hypoxemic patients with COPD

    Get PDF
    Exercise training (ExTr) is largely used to improve functional capacity of chronic obstructive pulmonary disease (COPD) patients. However, ExTr partially restores muscle function in COPD patients, suggesting that confounding factors may limit the efficiency of ExTr. In the present study, we hypothesized that skeletal muscle adaptations triggered by ExTr could be compromised in hypoxemic COPD patients. Vastus lateralis muscle biopsies were obtained from normoxemic (n = 15; resting arterial PO2 = 68.5 +/- 1.5 mm Hg) and hypoxemic (n = 8; resting arterial PO2 = 57.0 +/- 1.0 mm Hg) COPD patients before and after a 2 month-ExTr program. ExTr induced a significant increase in exercise capacity both in normoxemic and hypoxemic COPD patients. However, ExTr increased citrate synthase and lactate dehydrogenase enzyme activities only in skeletal muscle of normoxemic patients. Similarly, muscle fiber cross-sectional area and capillary-to-fiber ratio were only increased in normoxemic patients. Expression of atrogenes (MuRF1, MAFbx/Atrogin-1) and autophagy-related genes (Beclin, LC3, Bnip, Gabarapl) remained unchanged in both groups. The phosphorylation level of Akt (Ser473), GSK-3beta (Ser9) and p70S6k (Thr389), which was non-significantly increased in normoxemic patients in response to ExTr, was significantly decreased in hypoxemic patients. We further showed on C2C12 myotubes that hypoxia completely prevented IGF-1-induced phosphorylation of Akt, GSK-3beta and p70S6K. Together, our observations suggest a role for hypoxemia in the adaptive response of skeletal muscle of COPD patients to ExTr

    Consensus practice parameter: audiological assessment and management of unilateral hearing loss in children

    Get PDF
    Objective: Provide recommendations to audiologists for the management of children with unilateral hearing loss (UHL) and for needed research that can lend further insight into important unanswered questions. Design: An international panel of experts on children with UHL was convened following a day and a half of presentations on the same. The evidence reviewed for this parameter was gathered through web-based literature searches specifically designed for academic and health care resources, recent systematic reviews of literature, and new research presented at the conference that underwent peer review for publication by the time of this writing. Study sample: Expert opinions and electronic databases including Cumulative Index to Nursing and Allied Health Literature (CINAHL), Cochrane Library, Education Resources Information Centre (ERIC), Google Scholar, PsycINFO, PubMed, ScienceDirect, and Turning Research into Practice (TRIP) Database. Results: The resulting practice parameter requires a personalised, family-centred process: (1) routine surveillance of speech-language, psychosocial, auditory, and academic or pre-academic development; (2) medical assessments for determination of aetiology of hearing loss; (3) assessment of hearing technologies; and (4) considerations for family-centred counselling. Conclusions: This practice parameter provides guidance to clinical audiologists on individualising the management of children with UHL. In addition, the paper concludes with recommendations for research priorities

    Effects of hypoxia\u2013reoxygenation stimuli on renal redox status and nuclear factor erythroid 2-related factor 2 pathway in sickle cell SADmice

    Get PDF
    Hypoxia\u2013reoxygenation (H/R) stress is known to increase oxidative stress in transgenic sickle mice and can cause organ failure. Here we described the effects of H/R on nuclear factor erythroid 2-related factor 2 (Nrf2) as a putative regulator of redox status in the kidneys of SAD mice investigating Nrf2-regulated antioxidant enzymes. Transgenic SAD mice and healthy C57Bl/6J mice were exposed to 4 h of hypoxia followed by various times of reoxygenation at ambient air (2 or 6 h). Regardless of the conditions (i.e. normoxia or H/R), SAD mice expressed higher renal oxidative stress levels. Nuclear Nrf2 protein expression decreased after 2 h post-hypoxia only in the medulla region of the kidney and only in SAD mice. Simultaneously, haem oxygenase transcripts were affected by H/R stimulus with a significant enhancement after 2 h post-hypoxia. Similarly, hypoxia inducible factor-1 staining increased after 2 h post-hypoxia in SAD mice in both cortex and medulla areas. Our data confirm that the kidneys are organs that are particularly sensitive toH/R stimuli in sickle cell SAD mice. Also, these results suggest an effect of the duration of recovery period (short vs. long) and specific responses according to kidney areas, medulla vs. cortex, on Nrf2 expression in response to H/R stimuli in SAD mice

    Annexin A1 drives macrophage skewing to accelerate muscle regeneration through AMPK activation.

    Get PDF
    Understanding the circuits that promote an efficient resolution of inflammation is crucial to deciphering the molecular and cellular processes required to promote tissue repair. Macrophages play a central role in the regulation of inflammation, resolution, and repair/regeneration. Using a model of skeletal muscle injury and repair, herein we identified annexin A1 (AnxA1) as the extracellular trigger of macrophage skewing toward a pro-reparative phenotype. Brought into the injured tissue initially by migrated neutrophils, and then overexpressed in infiltrating macrophages, AnxA1 activated FPR2/ALX receptors and the downstream AMPK signaling cascade, leading to macrophage skewing, dampening of inflammation, and regeneration of muscle fibers. Mice lacking AnxA1 in all cells or only in myeloid cells displayed a defect in this reparative process. In vitro experiments recapitulated these properties, with AMPK-null macrophages lacking AnxA1-mediated polarization. Collectively, these data identified the AnxA1/FPR2/AMPK axis as an important pathway in skeletal muscle injury regeneration

    TNF-α- and tumor-induced skeletal muscle atrophy involves sphingolipid metabolism

    Get PDF
    Additional filesInternational audienceUNLABELLED: ABSTRACT: BACKGROUND: Muscle atrophy associated with various pathophysiological conditions represents a major health problem, because of its contribution to the deterioration of patient status and its effect on mortality. Although the involvement of pro-inflammatory cytokines in this process is well recognized, the role of sphingolipid metabolism alterations induced by the cytokines has received little attention. RESULTS: We addressed this question both in vitro using differentiated myotubes treated with TNF-α, and in vivo in a murine model of tumor-induced cachexia. Myotube atrophy induced by TNF-α was accompanied by a substantial increase in cell ceramide levels, and could be mimicked by the addition of exogenous ceramides. It could be prevented by the addition of ceramide-synthesis inhibitors that targeted either the de novo pathway (myriocin), or the sphingomyelinases (GW4869 and 3-O-methylsphingomyelin). In the presence of TNF-α, ceramide-synthesis inhibitors significantly increased protein synthesis and decreased proteolysis. In parallel, they lowered the expression of both the Atrogin-1 and LC3b genes, involved in muscle protein degradation by proteasome and in autophagic proteolysis, respectively, and increased the proportion of inactive, phosphorylated Foxo3 transcription factor. Furthermore, these inhibitors increased the expression and/or phosphorylation levels of key factors regulating protein metabolism, including phospholipase D, an activator of mammalian target of rapamycin (mTOR), and the mTOR substrates S6K1 and Akt. In vivo, C26 carcinoma implantation induced a substantial increase in muscle ceramide, together with drastic muscle atrophy. Treatment of the animals with myriocin reduced the expression of the atrogenes Foxo3 and Atrogin-1, and partially protected muscle tissue from atrophy. CONCLUSIONS: Ceramide accumulation induced by TNF-α or tumor development participates in the mechanism of muscle-cell atrophy, and sphingolipid metabolism is a logical target for pharmacological or nutritional interventions aiming at preserving muscle mass in pathological situations

    A novel puromycin decorporation method to quantify skeletal muscle protein breakdown: a proof-of-concept study

    Get PDF
    The precise roles that the major proteolytic pathways play in the regulation of skeletal muscle mass remain incompletely understood, in part due to technical limitations associated with current techniques used to quantify muscle protein breakdown (MPB). We aimed to develop a method to assess MPB in cells, based on loss of puromycin labelling of translated polypeptide chains. Following an initial 24 h incubation period with puromycin (1 μM), loss of puromycin labelling from murine C2C12 myotubes was assessed over 48 h, both in the presence or absence of protein synthesis inhibitor cycloheximide (CHX). To validate the method, loss of puromycin labelling was determined from cells treated with selected compounds known to influence MPB (e.g. serum starvation, Dexamethasone (Dex), tumour necrosis factor alpha (TNF-α) and MG-132)). Reported established (static) markers of MPB were measured following each treatment. Loss of puromycin labelling from cells pre-incubated with puromycin was evident over a 48 h period, both with and without CHX. Treatment with Dex (−14 ± 2% vs. Ctl; P < 0.01), TNF-α (−20 ± 4% vs. Ctl; P < 0.001) and serum starvation (−14 ± 4% vs. Ctl; P < 0.01) caused a greater loss of puromycin labelling than untreated controls, while the proteasome inhibitor MG-132 caused a relatively lower loss of puromycin labelling (+15 ± 8% vs. Ctl; P < 0.05). Thus, we have developed a novel decorporation method for measuring global changes in MPB, validated in vitro using an established muscle cell line. It is anticipated this non isotopic-tracer alternative to measuring MPB will facilitate insight into the mechanisms that regulate muscle mass/MPB both in vitro, and perhaps, in vivo

    H3K18 lactylation marks tissue-specific active enhancers

    Full text link
    Background: Histone lactylation has been recently described as a novel histone post-translational modification linking cellular metabolism to epigenetic regulation. Results: Given the expected relevance of this modification and current limited knowledge of its function, we generate genome-wide datasets of H3K18la distribution in various in vitro and in vivo samples, including mouse embryonic stem cells, macrophages, adipocytes, and mouse and human skeletal muscle. We compare them to profiles of well-established histone modifications and gene expression patterns. Supervised and unsupervised bioinformatics analysis shows that global H3K18la distribution resembles H3K27ac, although we also find notable differences. H3K18la marks active CpG island-containing promoters of highly expressed genes across most tissues assessed, including many housekeeping genes, and positively correlates with H3K27ac and H3K4me3 as well as with gene expression. In addition, H3K18la is enriched at active enhancers that lie in proximity to genes that are functionally important for the respective tissue. Conclusions: Overall, our data suggests that H3K18la is not only a marker for active promoters, but also a mark of tissue specific active enhancers. Keywords: Adipocyte; CUT&Tag; ChromHMM; Embryonic stem cell; Enhancer; Epigenetics; H3K18la; Histone post-translational modification; Lactate; Lactylation; Macrophage; Muscle; Promoter
    corecore