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Costes F, Gosker H, Feasson L, Desgeorges M, Kelders M, Castells J,
Schols A, Freyssenet D. Impaired exercise training-induced muscle fiber
hypertrophy and Akt/mTOR pathway activation in hypoxemic patients with
COPD. J Appl Physiol 118: 1040–1049, 2015. First published February 20,
2015; doi:10.1152/japplphysiol.00557.2014.—Exercise training (ExTr) is
largely used to improve functional capacity in patients with chronic
obstructive pulmonary disease (COPD). However, ExTr only partially
restores muscle function in patients with COPD, suggesting that
confounding factors may limit the efficiency of ExTr. In the present
study, we hypothesized that skeletal muscle adaptations triggered by
ExTr could be compromised in hypoxemic patients with COPD.
Vastus lateralis muscle biopsies were obtained from patients with
COPD who were either normoxemic (n � 15, resting arterial PO2 �
68.5 � 1.5 mmHg) or hypoxemic (n � 8, resting arterial PO2 � 57.0 �
1.0 mmHg) before and after a 2-mo ExTr program. ExTr induced a
significant increase in exercise capacity both in normoxemic and
hypoxemic patients with COPD. However, ExTr increased citrate
synthase and lactate dehydrogenase enzyme activities only in skeletal
muscle of normoxemic patients. Similarly, muscle fiber cross-sec-
tional area and capillary-to-fiber ratio were increased only in patients
who were normoxemic. Expression of atrogenes (MuRF1, MAFbx/
Atrogin-1) and autophagy-related genes (Beclin, LC3, Bnip,
Gabarapl) remained unchanged in both groups. Phosphorylation of
Akt (Ser473), GSK-3� (Ser9), and p70S6k (Thr389) was nonsignifi-
cantly increased in normoxemic patients in response to ExTr, but it
was significantly decreased in hypoxemic patients. We further showed
on C2C12 myotubes that hypoxia completely prevented insulin-like
growth factor-1-induced phosphorylation of Akt, GSK-3�, and
p70S6K. Together, our observations suggest a role for hypoxemia in
the adaptive response of skeletal muscle of patients with COPD in an
ExTr program.

COPD; skeletal muscle; hypoxia; exercise training

CHRONIC OBSTRUCTIVE PULMONARY disease (COPD) is one of the
main causes of morbidity and a leading cause of death world-
wide (32). Muscle dysfunction is an important systemic con-
sequence of COPD (17, 47). It is characterized by a shift from
type I to type II muscle fibers, a loss of oxidative capacity, a
reduced capillary density, and an atrophy of muscle fibers
resulting in a severe loss of muscle mass (49). All these factors
significantly contribute to reduce a patient’s exercise capacity
and quality of life, ultimately leading to greater mortality (5,
38). Although interventional strategies such as nutritional sup-
port and exercise training (ExTr) improve the quality of life
and survival of patients with COPD when associated with a

weight gain (29, 39), these strategies do not succeed in coun-
teracting muscle dysfunction and mass loss in patients.

Skeletal muscle mass is tightly regulated by the Akt/mam-
malian target of rapamycin (mTOR) pathway. Stimulation of
the Akt/mTOR pathway increases protein translation in skele-
tal muscle (7, 36) and inhibits protein degradation via the
inhibition of both ubiquitin-proteasome (7, 37, 40) and au-
tophagy-lysosome pathways (26, 50). This notably involves the
regulation of FoxO1 and FoxO3 transcriptional activity on the
promoters of MuRF1, Atrogin-1/MAFbx, and autophagy-re-
lated genes (26, 37, 40, 50). The available literature is con-
flicting regarding the regulation of this pathway in skeletal
muscle of patients with COPD. A downregulation of the
Akt/mTOR pathway has been reported in skeletal muscle of
patients with COPD compared with healthy subjects (45),
whereas other studies reported no difference (30) or even an
upregulation of the pathway (11). By contrast, a high-intensity
interval training program allows the reactivation of the Akt/
mTOR pathway in skeletal muscle of patients with COPD (45).
Furthermore, strength training in these patients increases
muscle expression of insulin-like growth factor-1 (IGF-1),
an upstream activator of the signaling pathway (24). There-
fore, rehabilitation strategies incorporating resistance exer-
cise may be helpful in limiting the extent of skeletal muscle
mass loss in patients with COPD by activating the Akt/
mTOR pathway.

However, some recent studies suggest that the severity of
hypoxemia could be associated with a resistance of skeletal
muscle to the activation of the Akt/mTOR pathway. Indeed,
muscle atrophy resulting from ambient hypoxia in rodents
involves a downregulation of the Akt/mTOR pathway and an
upregulation of the ubiquitin/proteasome pathway (9, 18). In
line with these findings, we reported a downregulation of the
Akt/mTOR pathway in hypoxemic patients with COPD com-
pared with normoxemic patients with COPD (18). Taken
together, these data strongly suggest that the response of
Akt/mTOR pathway to ExTr could be compromised in hypox-
emic patients with COPD.

In the present study, we therefore tested the hypothesis
that the response of skeletal muscle to ExTr would be
altered in patients with COPD and severe hypoxemia com-
pared with normoxemic patients with COPD. We particu-
larly focused our attention on the regulation of muscle fiber
size and Akt/mTOR pathway. To further delineate the role
of hypoxia, an in vitro analysis of the effects of hypoxia on
the regulation of Akt/mTOR pathway was also performed on
C2C12 myotubes.
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METHODS

Subjects

We included 23 consecutive patients with COPD who entered an
outpatient pulmonary rehabilitation center (CHU Saint Étienne). Writ-
ten consent in accordance with the policy statement regarding the use
of human subjects was obtained from all patients. This investigation
was approved by the Rhône-Alpes Loire regional Consultant Com-
mittee on Human Protection for Medical Research and received
agreement from the French Health Minister (DGS 2005/023). Criteria
for inclusion in the study were a stable COPD disease (absence of
exacerbation during the last 4 wk), the ability to perform maximal
exercise testing, and no contraindication to muscle biopsy (e.g.,
chronic anticoagulant treatment). All patients were treated with in-
haled long-lasting sympathomimetics and inhaled corticosteroids.
Fifteen patients were also treated with tiotropium. None used oral
corticosteroid regularly at the time of inclusion. Patients were con-
sidered to be hypoxemic (long-term oxygen therapy �6 h/day for
more than 3 mo, resting arterial PO2 �55 mmHg at the initiation of the
treatment, n � 8) or normoxemic (resting arterial PO2 � 60 mmHg,
n � 15).

Pulmonary Function and Morphometric Characteristics of Patients

Lung volumes and airflows were measured (Bodybox; Medisoft,
Dinant Belgium) according to European Respiratory Society recom-
mendations (48). Postbronchodilator values were reported. Body com-
position was assessed by bioelectrical impedance at 50 Hz (Nutrigard
Data Input; Pöcking, Germany) and fat free mass was calculated and
compared with normal values according to those outlined by Kyle et
al. (23). Body mass index (BMI) and fat-free mass index (FFMI) were
also calculated.

Evaluation of Exercise Capacity and Muscle Strength

Incremental cycling exercise. After a 3-min warmup, the patients
performed an incremental exercise test on a bicycle ergometer (5 to 10
W every min) while breathing room air (Ergocard; Medisoft, Dinant,
Belgium). Breath-by-breath analysis of inspired and expired gases
was used to determine oxygen consumption (V̇O2), CO2 output
(V̇CO2), and minute ventilation (V̇E). Peak power output (Wpeak)
corresponded to the highest workload that could be sustained for more
than 20 s. Electrocardiograhic and arterial oxygen saturation readings
were monitored continuously. Arterialized blood samples from the ear
were used for blood gas analysis and lactate measurement (ABL 800;
Radiometer, Copenhagen, Denmark). A Borg scale was used to assess
dyspnea and fatigue. Exercise capacity was determined before and
after ExTr.

Maximal muscle force. Patients sat on a bench and performed
isometric maximal voluntary contractions of the quadriceps muscle
with a 90° knee flexion while breathing room air. Muscle force was
recorded with a dynamometer attached to the bench (Globus,
Codognè, Italy). Handgrip strength was tested using a hand dyna-
mometer (Jamar, Anaheim, CA). For each test, the best of three
reproducible contractions (�10%) was recorded. Muscle strength was
assessed before and after ExTr.

Multidisciplinary Pulmonary Rehabilitation Program

Patients participated in a multidisciplinary rehabilitation program
consisting of 24 sessions (three sessions/week) under the supervision
of a physiotherapist. ExTr included endurance bicycle exercise (20 to
30 min) and treadmill exercise (10 to 15 min). Patients were free to
adapt resting periods as necessary. Exercise intensity was initially set
to a heart rate corresponding to the ventilatory threshold (VT) mea-
sured during the initial maximal cycling test (42). When VT was not
discernible (one patient in the hypoxemic group and two patients in
the normoxemic group), the exercise intensity was arbitrarily fixed at

60% of peak workload. Heart rate and oxygen saturation were mon-
itored every 10 min during the session. Exercise intensity was ad-
justed every week to maintain heart rate to the target value: the
workload was increased by 5 W when the heart rate decreased by
more than 5 beats/min during two consecutive training sessions. For
patients with severe hypoxemia, oxygen was administered during
exercise to maintain SpO2 �90%. Patients also performed resistance
exercises of lower and upper limbs (three sets of 8-12 repetitions at
60% of their maximal isometric force). The workload was adjusted
every week and the intensity was increased up to 85% of maximal
force. Patients also participated in educational courses and relaxation
sessions, and received dietary counseling. However, neither protein or
essential amino acids supplementation nor hypocaloric diet was em-
ployed during the study.

Vastus Lateralis Muscle Biopsy; Immunohistochemical and
Biochemical Analyses

Muscle biopsy. Biopsy of the vastus lateralis muscle was performed
with a Weil-Blackesley forceps 24 h before the first training session
and 24 h after the last training session. Patients with hypoxemia
breathed ambient air for at least 1 h before the biopsy. Posttraining
biopsy was taken 2 cm away from the pretraining biopsy site.

Immunohistology and morphological analysis. Muscle samples
mounted in embedding medium were cut (10 �m) in a cryostat
microtome (HM 560; Microm, Walldorf, Germany) at 	20°C. Sec-
tions were immunostained with antibodies against myosin heavy
chain type I (A4.951; Alexis Biochemicals) and myosin heavy chain
type IIa (N2.261; Alexis Biochemicals) as previously described (44).
Fibers were classified as type I, IIa, I-IIa, or IIx fibers. The cross-
sectional area of at least 50 type I and type II fibers per biopsy was
determined. Microvessels were identified using a CD31 antibody
(Dako, Les Ulis, France). The number of capillaries in contact with
each fiber was counted and expressed as the capillary-to-fiber ratio
(19). Muscle sections were visualized under a light microscope
(Eclipse E400; Nikon, Bashoevedorp, The Netherlands) connected to
a digital camera (Nikon Coolpix 990). Photographs were analyzed
using ImageJ software (http://rsb.info.nih.gov/ij/, 1997–2014; Na-
tional Institutes of Health, Bethesda, MD).

RNA isolation, cDNA synthesis, and quantitative PCR analysis.
Total RNA was phenol-extracted from 20–30 mg of skeletal muscle
samples conditioned in RNAlater (Qiagen, Courtaboeuf, France) us-
ing the Total RNA isolation kit (Ambion, Austin, TX) followed by
purification on an RNeasy silica spin column (Qiagen). Complemen-
tary DNA was generated from 400 ng of RNA using the Transcriptor
First Strand cDNA synthesis kit (Roche Diagnostics, Mannheim,
Germany). The selected forward and reverse primer sequences are
listed in Table 1. Real-time quantitative polymerase chain reaction
(qPCR) was performed in a 20-�l final volume and optimized con-
centrations for each primer using Sensimix SYBR & Fluorescein (GC
Biotech, Alphen aan den Rijn, The Netherlands) and a MyiQ single-
color real-time thermal cycler (Bio-Rad, Hercules, CA). Expression
stability of seven reference genes (glyceraldehyde-3-phosphate dehy-
drogenase, �-actin, cyclophilin A, large ribosomal protein ribosomal
protein P0, large ribosomal protein, ribosomal protein 13A, �2-
microglobulin, tyrosine 3-monooxygenase/tryptophan 5-monooxy-
genase activation protein zeta polypeptide) was assessed using
GENORM software (Gent University, Gent, Belgium) (14, 43). All
references genes were used for normalization.

Protein isolation. Muscle samples were homogenized at 4°C in a
20-volume buffer consisting of 50 mM Tris HCl (pH 7.4), 100 mM
NaCl, 2 mM EDTA, 2 mM EGTA, 50 mM �-glycerophosphate, 50
mM NaF, 1 mM sodium orthovanadate, 120 nM okadaic acid, and 1%
Triton X-100. Homogenates were centrifuged at 12,000 g for 20 min
at 4°C. Protein concentration of the supernatant was spectrophoto-
metrically measured at 750 nm using the Bio-Rad protein assay
(Marnes-la-Coquette, France).
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Enzyme activities. Citrate synthase (CS, EC 4.1.3.7) and lactate
dehydrogenase (LDH, EC 1.1.1.27) enzyme activities were fluoro-
metrically determined (
exc � 340 nm and 
em � 450 nm) (13).
Cathepsin B�L (EC 3.4.22.1 and EC 3.4.22.15), chymotrypsin-like
(EC 3.4.21.1), trypsin-like (EC 3.4.21.4), and caspase-like (EC
3.4.13.17) enzyme activities of 20S proteasome were fluorometrically
measured (
exc � 380 nm and 
em � 460 nm) by cleavage of specific
amido-4-methylcoumarin-coupled substrates (Bachem, Weil am
Rhein, Germany) as previously described (6, 12).

Western immunoblotting. Proteins (50 �g) were separated on
12.5% SDS-PAGE and transferred onto 0.45-�m nitrocellulose
membranes. Gel loading was systematically checked by Coomassie
staining. Immunoblot analysis of proteins was performed as pre-
viously described (21) with the following primary antibodies
against Akt (1:1,000): AktSer473 (1:1,000), glycogen synthase ki-
nase (GSK)-3� (1:1,000), GSK-3�Ser9 (1:1,000), p70S6K (1:1,000),
and p70S6KThr389 (1:1,000). All primary antibodies were obtained
from Millipore (Molsheim, France).

In Vitro Study

Cell culture. C2C12 myoblasts (CRL-1772; American Type Cul-
ture Collection) were cultured in Dulbecco’s modified Eagle’s me-
dium (DMEM) supplemented with 10% fetal bovine serum and 1%
penicillin/streptomycin (P/S) at 37°C in 5% CO2 in air on 60-mm
dishes. At 70% confluence, myoblasts were differentiated into myo-
tubes in DMEM supplemented with 5% horse serum and 1% P/S.
After 5 days of differentiation, myotubes were exposed to hypoxia
(2% O2 in 5% CO2) or normoxia (21% O2 in 5% CO2) for 48 h. Two
days later, myotubes were cultured in DMEM containing 1% P/S for
4 h in hypoxia or normoxia. IGF-1 (20 nM) was then added (Sigma-
Aldrich, Saint-Quentin Fallavier, France) and the myotubes were
replaced in their respective ambiance before being harvested at the
indicated time points.

RNA isolation, cDNA synthesis, and qPCR analysis. Myotubes
were harvested 120 and 180 min after IGF-1 addition and used for
total RNA extraction (RNeasy mini kit; Qiagen) following the man-
ufacturer’s instructions. Myotubes without IGF-1 were used as the
control (0 min). Total RNA extraction, synthesis of cDNA, and

real-time PCR were performed as previously described (10). The
selected forward and reverse primer sequences are listed in Table 1.
Reference genes (�-actin and �-tubulin) were used to normalize the
expression level of genes of interest (14, 43).

Protein extraction and luminex analysis. Myotubes were harvested
60 and 180 min after IGF-1 addition. Myotubes without IGF-1 were
used as the control (0 min). Soluble proteins were extracted and
analyzed for the expression of phosphorylated forms of AktSer473,
GSK-3�Ser9, and p70S6KThr421/Ser424 (Bio-Rad). The analysis con-
sisted of a double-laser fluorescence detection, which allowed simul-
taneous identification of the target protein through the red fluores-
cence emission signal of the bead and quantification of the target
protein through the fluorescence intensity of phycoerythrin (Bio-Plex
200 System; Bio-Rad) (10).

Statistical Analysis

The clinical outcome initially designed for the present study was a
training effect on maximal power output. We performed a statistical
power of analysis and calculated that eight patients in each group was
enough to detect a 10-W difference in peak workload with a standard
deviation of 6 W (� � 0.05, � � 90%). Data are means � SE. The
effect of ExTr and hypoxemia on exercise capacity, muscle strength,
protein content, and mRNA level was assessed by two-way ANOVA
(Statview 5.0) followed by a Scheffé protected least significance
difference test to detect specific mean differences. Akt, GSK-3�, and
p70S6K phosphorylation levels between normoxemic and hypoxemic
patients were compared by a Mann-Whitney test. For in vitro exper-
iments, mRNA and phosphorylated proteins levels were compared by
two-way ANOVA (time  ambiance) followed by a Scheffé post hoc
test. Statistical difference was established at P � 0.05.

RESULTS

Baseline Patient Characteristics and Functional Benefits of
ExTr

Patients displayed moderate to severe airway obstruction
and mild to moderate lung hyperinflation (Table 2). Hypox-

Table 1. Sequences of the primers used for real-time quantitative PCR analysis

Forward Reverse

Human
Atrogin-1 GAAGAAACTCTGCCAGTACCACTTC CCCTTTGTCTGACAGAATTAATCG
MuRF1 GCGAGGTGGCCCCATT GATGGTCTGCACACGGTCATT
LC3b ACCATGCCGTCGGAGAAGAC TCTCGAATAAGTCGGACATCTTCTACTCT
Gabarabl ATCGGAAAAAGGAAGGAGAAAAGATC CAGGCACCCTGGCTTTTGG
Nedd4 TCACTGGCACATCTCGGGTG TCATAAGGTGGCAAGTCCAGGC
MSTN AACCTTCCCAGGACCAGGAGAA TGTCTGTTACCTTGACCTCTAAAAACGG
BECN1 AATGCAACCTTCCACATCTGGC CCCAGCCTGAAGTTATTGATTGTGC
Bnip3 AGCGCCCGGGATGCA CCCGTTCCCATTATTGCTGAA
YWHAZ ACTTTTGGTACATTGTGGCTTCAA CCGCCAGGACAAACCAGTAT
GAPDH GCACCACCAACTGCTTAGCA TGGCAGTGATGGCATGGA
�-Actin AAGCCACCCCACTTCTCTCTAA AATGCTATCACCTCCCCTGTGT
Cyclophilin A CATCTGCACTGCCAAGACTGA TTCATGCCTTCTTTCACTTTGC
RPLP0 TCTACAACCCTGAAGTGCTTGATATC GCAGACAGACACTGGCAACATT
RPL13A CCTGGAGGAGAAGAGGAAAGAGA TTGAGGACCTCTGTGTATTTGTCAA
B2M CTGTGCTCGCGCTACTCTCTCTT TGAGTAAACCTGAATCTTTGGAGTACGC
IGF-1 TCCGTGCCCAGCGC GCGTTCTTCAAATGTACTTCCTT

Mouse
Atrogin-1 GTTTTCAGCAGGCCAAGAAG TTGCCAGAGAACACGCTATG
MuRF-1 ACCTGCTGGTGGAAAACATC AGGAGCAAGTAGGCACCTCA
Tubulin 1� TGAGGAGGTTGGTGTGGATTC AAACATCCCTGTGGAAGCAG
�-Actin AGCAAGCAGGAGTACGATGAG AACGCAGCTCAGTAACAGTC

LC3b, microtubule-associated protein light chain 3; MSTN, myostatin; BECN1, Beclin; Bnip3, BCL2/adenovirus E1B 19-kDa interacting protein; YWHAZ,
tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta polypeptide; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; RPLPO,
large ribosomal protein, ribosomal protein P0; RPL13A, large ribosomal protein, ribosomal protein 13A; B2M, beta-2 microglobulin.
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emic patients had a lower PaO2
and a tendency toward more

severe airway obstruction and higher hyperinflation (Table 2).
BMI and FFMI were similar in both normoxemic and hypox-
emic groups (Table 3). A depleted state (FFMI �17 for men,
15 kg/m2 for women) was present in five normoxemic patients
and four hypoxemic patients.

Before ExTr, hypoxemic patients had a lower Wpeak (Table
3). V̇O2 peak also tended to be lower in patients with hypoxemia.
Relative training intensities at the end of the first month of the
training program were similar in both groups (76.5 � 7.7% and
66.2 � 11.6% of pretraining Wpeak in normoxemic and hypox-
emic patients, respectively). At the end of the training program,
training intensities were similar in normoxemic and hypoxemic
patients (83.6 � 7% vs. 76.5 � 7% of pretraining Wpeak for
normoxemic and hypoxemic groups, respectively). Duration of
the training sessions was also similar in normoxemic and

hypoxemic patients (36 � 3 vs. 30 � 2 min, and 36 � 3 vs. 33 � 1
min for normoxemic and hypoxemic groups, respectively, at
the end of the first and second month of ExTr). ExTr signifi-
cantly increased Wpeak, illustrating the efficacy of the rehabil-
itation program (Table 3). The relative increase in Wpeak was
not significantly different between groups. V̇O2 peak tended to
increase, but it did not reach the significance level. The
V̇O2/workload relationship was not significantly different be-
tween groups and did not change after ExTr (10.1 � 0.7 and
11.2 � 1.5 ml·min	1·W	1 in normoxemic and hypoxemic
groups, respectively). Dyspnea and fatigue Borg scores were
similar in both groups of patients during incremental cycling
exercise before and after ExTr (Table 3). Quadriceps muscle
force increased significantly in response to ExTr both in
normoxemic and hypoxemic patients (Table 3). Finally, hand-
grip force, used as a control test, remained unchanged in
response to ExTr.

Effects of ExTr on CS and LDH Activities, Muscle Fiber
Type Distribution, Muscle Fiber Size, and Capillarization

CS activity was significantly increased in the normoxemic
group in response to ExTr, whereas it remained relatively
unchanged in the hypoxemic group (Fig. 1A). LDH activity,
which was significantly higher in hypoxemic patients before
ExTr, was increased only in normoxemic patients in response
to ExTr (Fig. 1B).

Muscle fiber type distribution was not significantly different
between groups before ExTr, and it remained unchanged in
response to ExTr (Table 4). Muscle fiber cross-sectional area
was significantly larger in hypoxemic patients compared with
normoxemic patients before ExTr (Fig. 2). ExTr elicited a
significant increase in muscle fiber cross-sectional area in the
normoxemic group, whereas muscle fiber cross-sectional area
remained unchanged in hypoxemic patients (Fig. 2). Before
training, the capillary-to-fiber ratio was significantly higher in
the hypoxemic group compared with that in the normoxemic
group. Capillary-to-fiber ratio increased significantly in the
normoxemic group with ExTr, whereas it remained unchanged
in the hypoxemic group (Table 4). Normalized to muscle fiber

Table 2. Baseline morphometric, spirometric and blood
gases characteristics in normoxemic and hypoxemic patients
with COPD

Subject Characteristic Normoxemic Group Hypoxemic Group

n, sex ratio 15, 12M/3F 8, 8M
Age, yr 60.5 � 1.9 60.4 � 2.4
Gold stage II/III/IV 4/9/2 0/0/8
FEV1, liter 1.18 � 0.07 1.05 � 0.13
FEV1, % pred 42 � 3 34 � 4
FVC, liter 2.85 � 0.22 3.35 � 0.23
FVC, % pred 77 � 7 87 � 6
FEV1/FVC,% 43 � 3 31 � 3
RV, liter 4.12 � 0.32 5.10 � 0.50
RV, % pred 186 � 12 224 � 22
TLC, liter 7.20 � 0.47 8.51 � 0.58
TLC, % pred 112 � 10 131 � 6
PaO2, mmHg 68.5 � 1.5 57.0 � 1.0a

PaCO2, mmHg 35.9 � 1.2 36.9 � 1.8
SaO2, % 95.1 � 0.4 90.9 � 0.8

COPD, chronic obstructive pulmonary disease; FEV1, forced expiratory
volume in 1 s; % pred, percentage of predicted value; FVC, forced vital
capacity; RV, residual volume; TLC, total lung capacity; PaO2, oxygen arterial
blood pressure; PaCO2, carbon dioxide arterial blood pressure; SaO2, oxygen
arterial saturation. Data are means � SE. aSignificantly different from corre-
sponding normoxemic patients.

Table 3. Body composition and exercise tolerance in normoxemic and hypoxemic patients with COPD before and after
exercise training

Before ExTr After ExTr

Normoxemic Hypoxemic Normoxemic Hypoxemic

BMI, kg/m2 23.8 � 1.1 23.0 � 1.6 24.1 � 1.0 23.0 � 1.5
FFMI, kg/m2 18.0 � 0.7 18.0 � 0.8 17.9 � 0.6 17.8 � 0.9
Wpeak, W 63.7 � 6.7 43.1 � 4.3 72.0 � 8.7 52.5 � 3.0
Wpeak, %pred 41 � 4 26 � 3a 45 � 5b 32 � 3ab

V̇O2peak, ml/min 933 � 75 816 � 81 989 � 89 864 � 60
V̇O2peak, %pred 51 � 4 41 � 4 52 � 4 45 � 7
HRpeak, %pred 79 � 2 78 � 4 79 � 2 77 � 5
VR, % 	12 � 6 5 � 6 	15 � 7 	13 � 7
Dyspnea Borg score 6.4 � 0.5 5.9 � 0.7 6.4 � 0.7 6.8 � 0.7
Fatigue Borg score 5.0 � 0.7 6.5 � 0.7 4.4 � 0.6 5.9 � 0.46
QMF, N 329 � 27 309 � 29 392 � 28b 401 � 50b

Handgrip, N 359 � 21 388 � 27 395 � 28 407 � 34

BMI, body mass index; ExTr, exercise training; FFMI, fat-free mass index; W, power output; V̇O2, oxygen uptake; HR, peak heart rate expressed as a
percentage of predicted value; VR, ventilatory reserve calculated as (MVV 	 V̇Emax)/MVV (MVV was predicted as 35  FEV1); dyspnea and fatigue Borg
scores, symptoms were recorded at peak cycling exercise; QMF, quadriceps muscle force measured in Newtons (N). Data are means � SE. aSignificantly different
from corresponding normoxemic group. bSignificantly different from baseline.

1043Muscle Remodeling and Hypoxemia • Costes F et al.

J Appl Physiol • doi:10.1152/japplphysiol.00557.2014 • www.jappl.org
Downloaded from journals.physiology.org/journal/jappl at Universiteit Maastricht (137.120.151.052) on May 8, 2021.



cross-sectional area, capillary-to-fiber ratio was nonsignifi-
cantly increased in the normoxemic group (Table 4).

Ubiquitin-Proteasome and Autophagy-Lysosome Pathways

We first determined whether some critical players in the
proteolytic pathways were differentially regulated between
normoxemic and hypoxemic patients with COPD. Messenger

RNA levels of MuRF1, Atrogin-1, and Nedd4 were not differ-
ent between groups before or after ExTr (Fig. 3A). In agree-
ment with these data, chymotrypsin-like enzyme activity of
20S proteasome remained unchanged with ExTr in both groups
(Fig. 3B). Similarly, mRNA levels of autophagy-related genes
(Beclin, LC3, Bnip, Gabarapl), as well as cathepsin B�L
enzyme activity, were similar in both groups and did not
change after ExTr (Fig. 3, C and D). Finally, the plasma level
of procatabolic (IL-1�, IL-6, IL-8, TNF-�, IFN-�) and anti-
catabolic (IL-10, IL-15) cytokines did not differ between
groups and remained unchanged with ExTr (data not shown).

Impaired Akt/mTOR Pathway Activation by ExTr in
Hypoxemic Patients with COPD

We next determined whether expression of known regulators
of the Akt/mTOR pathway was differentially regulated in
response to ExTr between normoxemic and hypoxemic pa-
tients. The transcript level of IGF-1, a positive regulator of the
Akt/mTOR pathway (36), and myostatin, a negative regulator
of the Akt/mTOR pathway (3), did not differ between normox-
emic and hypoxemic patients with COPD before or after ExTr
(Fig. 4, A and B).

We next investigated the phosphorylation status of several
downstream mediators of the Akt/mTOR pathway. The phos-
phorylation levels of AktSer473, GSK-3�Ser9, and p70S6kThr389

were differentially regulated in response to ExTr between
normoxemic and hypoxemic patients. The relative changes in
the phosphorylation level of these proteins were decreased in
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Fig. 1. Citrate synthase (A) and lactate dehydrogenase (B) enzyme activities in
vastus lateralis muscle in normoxemic and hypoxemic patients with chronic
obstructive pulmonary disease (COPD) before and after exercise training
(ExTr). Data are means � SE. aSignificantly different between groups of
patients before exercise training (ExTr). bSignificantly different with ExTr
within a group of patients.

Table 4. Vastus lateralis muscle fiber type distribution and capillarization in normoxemic and hypoxemic patients with
COPD before and after exercise training

Before ExTr After ExTr

Normoxemic Hypoxemic Normoxemic Hypoxemic

Type I, % 20.8 � 6.3 17.6 � 4.9 28.6 � 4.5 19.3 � 3.1
Type I-IIa, % 8.7 � 2.7 4.8 � 0.7 7.6 � 2.0 6.2 � 0.7
Type IIa, % 69.9 � 5.0 68.2 � 4.8 59.5 � 5.4 67.6 � 3.3
Type IIx, % 4.2 � 2.1 6.9 � 2.7 10.9 � 6.7 9.9 � 3.9
Capillary-to-fiber ratio 2.76 � 0.05 2.95 � 0.06a 3.20 � 0.06b 2.91 � 0.06a

CF/CSA 1.35 � 0.14 1.43 � 0.20 2.08 � 0.70 1.16 � 0.09

CF/CSA, capillary-to-fiber ratio corrected to fiber cross-sectional area. Data are means � SE. aSignificantly different from corresponding normoxemic group.
bSignificantly different with ExTr within a group of patients.

Fig. 2. Vastus lateralis muscle fiber cross-sectional area in normoxemic and
hypoxemic patients with COPD before and after ExTr. Data are means � SE.
aSignificantly different between groups of patients pre ExTr. bSignificantly
different with ExTr within a group of patients.
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hypoxemic patients with COPD in response to ExTr. Total
protein content of Akt, GSK-3�, and p70S6k did not differ
between groups and remained unchanged with ExTr (data not
shown).

Hypoxia Abolished IGF-1-Induced Stimulation of the Akt/
mTOR Pathway in C2C12 Myotubes

These data suggest that hypoxemia could be a factor that
contributes to limiting the capacity of the Akt/mTOR pathway
to respond to ExTr. We therefore further tested this hypothesis
by determining in vitro whether culturing myotubes in hypoxia
for 48 h could limit or blunt stimulation of the Akt/mTOR
pathway induced by IGF-1. When cultured in normoxia, addi-
tion of IGF-1 induced an immediate and sustained increase in
the phosphorylation of Akt, GSK-3�, and p70S6K (Fig. 5A).
By contrast, hypoxia completely prevented IGF-1-induced
phosphorylation of Akt and GSK-3�. Phosphorylation of
p70S6K was also decreased in response to IGF-1 addition in
hypoxia-preconditioned myotubes. Finally, the transcript level
of MuRF1 decreased significantly 180 min after IGF-1 addi-
tion, whereas the variation in the level of Atrogin-1 did not
reach statistical significance (Fig. 5B). No difference was
observed between culture conditions.

DISCUSSION

In the present study, we have demonstrated that ExTr in-
duced similar functional benefits in exercise capacity in nor-
moxemic and hypoxemic patients. However, our biochemical
analyses indicated that muscle fiber hypertrophy and activation
of the Akt/mTOR pathway by ExTr was impaired in the
skeletal muscle of hypoxemic patients with COPD. Further-
more, in vitro analysis using C2C12 myotubes indicated that

hypoxia prevented activation of the Akt/mTOR pathway in
response to IGF-1 addition, suggesting that hypoxemia could
be a factor that contributes to limiting the extent of skeletal
muscle response to ExTr in hypoxemic patients with COPD.

The training program was effective at increasing maximal
power output in both groups of patients. The extent of im-
provement was of comparable amplitude to that previously
described in patients with moderate to severe COPD (34) and
exceeded the minimal perceived difference (31). These data
confirmed that ExTr can similarly improve the exercise capac-
ity of normoxemic and hypoxemic patients with COPD (2, 8).
Such an observation has been also reported in cachectic and
noncachectic patients with COPD in response to pulmonary
rehabilitation (45). Exercise tolerance is influenced by many
factors, including motivation and habituation to the exercise
test. After ExTr, desensitization to dyspnea also contributes to
the improved exercise tolerance due to the alleviation of the
discomfort of breathing (1, 4). That this phenomenon could
occur in the hypoxemic group in the present study during
submaximal exercise could explain their better exercise toler-
ance and greater sustained workload without the need for
peripheral adaptations.

The increase in CS and LDH activities in response to ExTr
in skeletal muscle of normoxemic patients with COPD strongly
suggests an increase in their overall capacity to produce ATP
during exercise by increasing both oxidative and anaerobic
metabolic capacities. ExTr was thus efficient in eliciting met-
abolic adaptations in skeletal muscle of normoxemic patients.
By contrast, skeletal muscle of hypoxemic patients seems to be
refractory, in that both CS and LDH activities remained un-
changed in response to ExTr. This is in agreement with
previous reports showing that chronic exposure to hypoxia did

CA

DB

Fig. 3. Ubiquitin-proteasome and autophagy-
lysosome pathways. A: messenger RNA level
of ubiquitin ligases MuRF1, Atrogin-1, and
Nedd4 in the vastus lateralis muscle of nor-
moxemic (N) and hypoxemic (H) patients
with COPD before (open bars) and after
(black bars) ExTr. B: chymotrypsin-like en-
zyme activity in the vastus lateralis muscle
before (open bars) and after (black bars) ExTr.
C: messenger RNA level of autophagy-related
genes [Beclin, microtubule-associated protein
light chain 3 (LC3), BCL2/adenovirus E1B
19-kDa interacting protein (Bnip), and
Gabarapl]. D: cathepsin B�L enzyme activity
in vastus lateralis muscle of N and H patients
with COPD before (open bars) and after
(black bars) ExTr. Messenger RNA level was
determined by relative quantification with
real-time PCR. Data are means � SE.
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not change (or even decreased) mitochondrial enzyme activity
(27, 35) and mitochondrial content of skeletal muscle (20).
Overall, this suggests that the extent of skeletal muscle meta-
bolic response to ExTr is altered in hypoxemic patients with
COPD.

Surprisingly, hypoxemic patients with COPD had larger
fiber cross-sectional area compared with normoxemic patients.
This difference still existed when female patients from the
normoxic group were excluded from the analysis, thus ruling
out a gender effect. A lower muscle fiber size in normoxemic

patients with COPD compared with those who were hypox-
emic before ExTr could have been beneficial by increasing the
capillary-to-muscle fiber ratio and thus improving oxygen
delivery to skeletal muscle (15). However, the observation that
the capillary-to-fiber ratio normalized to muscle fiber cross-
sectional area was not different between groups does not
support this hypothesis. The reported increase in muscle fiber
cross-sectional area with ExTr in normoxemic patients is in
agreement with a recent study showing that ExTr in normox-
emic patients with COPD increased muscle fiber cross-sec-
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Fig. 4. Insulin-like growth factor (IGF)-1 mRNA level, myostatin mRNA level, and the Akt/mTOR pathway. IGF-1 (A) and myostatin (B) mRNA levels remained
unchanged in the vastus lateralis muscle of normoxemic and hypoxemic patients with COPD before (open bars) and after (black bars) ExTr. Messenger RNA
level was determined by relative quantification with real-time PCR. C: relative changes in phosphorylation levels of AktSer473, GSK-3�Ser9, and p70S6KThr421/Ser424 in
response to ExTr in normoxemic and hypoxemic patients. Representative blots before and after ExTr for each phosphorylated protein measured appear on the
left. Data are means � SE. aSignificantly different with ExTr.
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tional area by 11% (46). ExTr also increased muscle fiber
capillarization in skeletal muscle of normoxemic patients. By
contrast, skeletal muscle of hypoxemic patients was refractory
to the effects of ExTr because both muscle fiber cross-sectional
area and capillarization remained unchanged in response to
ExTr. Taken together, these data suggest that ExTr increases
oxygen delivery in normoxemic patients above the capacity of
hypoxemic patients. Interestingly, Vogiatzis et al. (45) previ-
ously reported a lower degree of muscle fiber hypertrophy in
cachectic patients with COPD compared with noncachectic
patients in response to ExTr. Therefore, a resistance of skeletal
muscle to the beneficial effects of ExTr in patients with COPD
could be a common feature linked to the severity of the disease
either appreciated by the extent of cachexia, or by the degree of
hypoxia, or both.

Several hypotheses could be evoked to explain the differen-
tial regulation in muscle fiber cross-sectional area between
normoxemic and hypoxemic patients with COPD. One may
first argue that a difference in muscle fiber type distribution
could affect muscle fiber cross-sectional area. However, mus-
cle fiber type distribution was similar in both groups before and
after ExTr. Second, this observation could also result from an

increase in protein degradation in hypoxemic patients with
COPD. In the present study, markers of both ubiquitin-protea-
some and autophagy-lysosome pathways were unchanged in
response to ExTr. The invasive nature of the muscle biopsy
precluded the inclusion of an earlier time point during ExTr, so
we cannot rule out the possibility that an adaptive response of
both ubiquitin-proteasome and autophagy-lysosome pathways
may have occurred earlier during the rehabilitation procedure.
Third, the different regulation of the Akt/mTOR signaling
pathway between normoxemic and hypoxemic patients with
COPD in response to ExTr could also contribute to explaining
the increase in muscle fiber cross-sectional area in normoxemic
patients.

We do not have definite evidence to assume that hypoxemia
impairs the adaptive response of skeletal muscle in patients
with COPD, but several arguments suggest that hypoxemia
could be involved in the unresponsiveness of hypoxemic pa-
tients with COPD. First, we previously showed that chronic
hypoxia in rodents and severe hypoxemia in patients with
COPD downregulated the Akt/mTOR pathway (18). Second, a
short-term hypoxia exposure in healthy volunteers (3.5 h) has
been associated with a blunted muscle protein synthesis in

A B

Fig. 5. Effects of hypoxia on phosphorylation
levels of AktSer473, GSK-3�Ser9, and
p70S6KThr421/Ser424 (A) and transcript levels of
MuRF1 and Atrogin-1 (B). C2C12 myotubes
(5 days of differentiation) were cultured in
either normoxia or in hypoxia for 48 h. Myo-
tubes were harvested 60 (T60) and 180
(T180) min after IGF-1 addition (20 nM) and
analyzed as described in MATERIALS AND

METHODS. Myotubes without IGF-1 were used
as controls (T0). Values are means � SE.
aDifferent from T0 in the same culture con-
dition. bDifferent from the same time point in
normoxia.
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response to acute resistance exercise (16). Finally, our in vitro
analyses on C2C12 myotubes showed that hypoxia per se
almost completely abolished the response of the Akt/mTOR
pathway to IGF-1. The mechanisms that could be involved in
hypoxia-induced skeletal muscle resistance to an anabolic
stimulus are currently unknown. However, a recent in vitro
study indicated that hypoxia reduced the sensitivity of the IGF
receptor, leading to a decreased activation of Akt in myoblasts
(25). Furthermore, insulin receptor substrate-1 has been shown
to be phosphorylated on serine or threonine residues in hyp-
oxia, thus preventing further activation of the pathway (22, 41).
Whether such a mechanism occurs in vivo in adult skeletal
muscle deserves further experiments.

Study Limitations

The limited number of hypoxemic patients (n � 8) is
acknowledged as a limitation in our study. The clinical out-
come initially designed for the present study was a training
effect on maximal power output. The statistical power of
analysis indicated that eight patients were necessary to detect a
10-W difference in peak workload with a standard deviation of
6 W (� � 0.05, � � 90%). Recent studies have shown
significant training-induced adaptations in muscle fiber cross-
sectional area and protein phosphorylation (43), as well as gene
expression in subgroups of 6 to 10 patients with COPD (33),
suggesting that despite the limited number of subjects in the
hypoxemic group, this would have been enough to detect
muscle adaptations.

Another time point of analysis would have also been very
informative to further decipher the kinetic response of intra-
cellular signaling events. However, for a number of ethical
reasons essentially linked to the invasive nature of the muscle
biopsy, this was not possible. Finally, we do not have definite
evidence to assume that hypoxemia impairs the adaptive re-
sponse of skeletal muscle in patients with COPD. Hypoxemic
patients received long-term oxygen therapy for at least 3 mo
before inclusion. Furthermore, clinical guidelines recommend
adding O2 during ExTr sessions to maintain arterial O2 satu-
ration in the 88% to 90% range (28). This was carried out in the
present study. Therefore, hypoxemic patients lived and exer-
cised with O2 supplementation, which could minimize the
effect of muscle hypoxia.

In conclusion, although hypoxemic patients with COPD
retained the capacity to improve their exercise capacity in
response to ExTr as much as normoxemic patients did, hypox-
emic patients with COPD were resistant to ExTr-induced
skeletal muscle adaptations.
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