1,472 research outputs found

    The impact of air pollutant and methane emission controls on tropospheric ozone and radiative forcing: CTM calculations for the period 1990-2030

    Get PDF
    To explore the relationship between tropospheric ozone and radiative forcing with changing emissions, we compiled two sets of global scenarios for the emissions of the ozone precursors methane (CH<sub>4</sub>), carbon monoxide (CO), non-methane volatile organic compounds (NMVOC) and nitrogen oxides (NO<sub>x</sub>) up to the year 2030 and implemented them in two global Chemistry Transport Models. The 'Current Legislation' (CLE) scenario reflects the current perspectives of individual countries on future economic development and takes the anticipated effects of presently decided emission control legislation in the individual countries into account. In addition, we developed a 'Maximum technically Feasible Reduction' (MFR) scenario that outlines the scope for emission reductions offered by full implementation of the presently available emission control technologies, while maintaining the projected levels of anthropogenic activities. Whereas the resulting projections of methane emissions lie within the range suggested by other greenhouse gas projections, the recent pollution control legislation of many Asian countries, requiring introduction of catalytic converters for vehicles, leads to significantly lower growth in emissions of the air pollutants NO<sub>x</sub>, NMVOC and CO than was suggested by the widely used and more pessimistic IPCC (Intergovernmental Panel on Climate Change) SRES (Special Report on Emission Scenarios) scenarios (Nakicenovic et al., 2000), which made Business-as-Usual assumptions regarding emission control technology. With the TM3 and STOCHEM models we performed several long-term integrations (1990-2030) to assess global, hemispheric and regional changes in CH<sub>4</sub>, CO, hydroxyl radicals, ozone and the radiative climate forcings resulting from these two emission scenarios. Both models reproduce broadly the observed trends in CO, and CH<sub>4</sub> concentrations from 1990 to 2002. <P style='line-height: 20px;'> For the 'current legislation' case, both models indicate an increase of the annual average ozone levels in the Northern Hemisphere by 5ppbv, and up to 15ppbv over the Indian sub-continent, comparing the 2020s (2020-2030) with the 1990s (1990-2000). The corresponding higher ozone and methane burdens in the atmosphere increase radiative forcing by approximately 0.2 Wm<sup>-2</sup>. Full application of today's emissions control technologies, however, would bring down ozone below the levels experienced in the 1990s and would reduce the radiative forcing of ozone and methane to approximately -0.1 Wm<sup>-2</sup>. This can be compared to the 0.14-0.47 Wm<sup>-2</sup> increase of methane and ozone radiative forcings associated with the SRES scenarios. While methane reductions lead to lower ozone burdens and to less radiative forcing, further reductions of the air pollutants NO<sub>x</sub> and NMVOC result in lower ozone, but at the same time increase the lifetime of methane. Control of methane emissions appears an efficient option to reduce tropospheric ozone as well as radiative forcing

    RETROCAM: A Versatile Optical Imager for Synoptic Studies

    Full text link
    We present RETROCAM, an auxiliary CCD camera that can be rapidly inserted into the optical beam of the MDM 2.4m telescope. The speed and ease of reconfiguring the telescope to use the imager and a straightforward user interface permit the camera to be used during the course of other observing programs. This in turn encourages RETROCAM's use for a variety of monitoring projects.Comment: 6 pages, 6 figures, Accepted by A

    Halocarbon ozone depletion and global warming potentials

    Get PDF
    Concern over the global environmental consequences of fully halogenated chlorofluorocarbons (CFCs) has created a need to determine the potential impacts of other halogenated organic compounds on stratospheric ozone and climate. The CFCs, which do not contain an H atom, are not oxidized or photolyzed in the troposphere. These compounds are transported into the stratosphere where they decompose and can lead to chlorine catalyzed ozone depletion. The hydrochlorofluorocarbons (HCFCs or HFCs), in particular those proposed as substitutes for CFCs, contain at least one hydrogen atom in the molecule, which confers on these compounds a much greater sensitivity toward oxidation by hydroxyl radicals in the troposphere, resulting in much shorter atmospheric lifetimes than CFCs, and consequently lower potential for depleting ozone. The available information is reviewed which relates to the lifetime of these compounds (HCFCs and HFCs) in the troposphere, and up-to-date assessments are reported of the potential relative effects of CFCs, HCFCs, HFCs, and halons on stratospheric ozone and global climate (through 'greenhouse' global warming)

    Debuncher Cooling Performance

    Get PDF
    Abstract. We present measurements of the Fermilab Debuncher momentum and transverse cooling systems. These systems use liquid helium cooled waveguide pickups and slotted waveguide kickers covering the frequency range 4-8 GHz. Keywords: Stochastic Cooling, Antiproton Beams PACS: 41.75.Lx THE FERMILAB DEBUNCHER The Fermilab Debuncher is an 8 GeV ring designed for the collection, RF debunching, and storage of anitprotons. The Tevatron Collider program requires 1e13 antiprotons for the study of proton-antiproton collisions at √ s = 1.96 TeV. Antiprotons are produced by impinging a 120 GeV proton beam on an nickel alloy target and collected through a lithium focussing lens and the Debuncher ring then stochastic stacked in the Fermilab Accumulator PERFORMANCE REQUIREMENTS The Debuncher accepts a few ×10 8 antiprotons every 2 seconds. The input beam fills the transverse aperture of the beam, consistent with a transverse emittance of 320π mm mr (95% unnormalized). At the end of the 2 second cycle, the beam is required to have transverse emittance less than 45π mm mr (95% unnormalized) in both planes (factor of 7). After bunch rotation, the 95% momentum width is approximately 60 MeV/c. At the end of the 2 second cycle, the 95% momentum width of the beam is required to be less than 6 MeV/c (factor of 10). These requirements correspond to a 6-dimensional phase space density (ρ 6d = N particles ε l ε h ε v ) increase of a factor of 500

    Measurement of the ttˉproductioncrosssectionint\bar{t} production cross section in p\bar{p}collisionsat collisions at \sqrt{s}$ = 1.8 TeV

    Full text link
    We update the measurement of the top production cross section using the CDF detector at the Fermilab Tevatron. This measurement uses ttˉt\bar{t} decays to the final states e+νe+\nu+jets and μ+ν\mu+\nu+jets. We search for bb quarks from tt decays via secondary-vertex identification or the identification of semileptonic decays of the bb and cascade cc quarks. The background to the ttˉt\bar{t} production is determined primarily through a Monte Carlo simulation. However, we calibrate the simulation and evaluate its uncertainty using several independent data samples. For a top mass of 175 GeV/c2GeV/c^2, we measure σttˉ=5.1±1.5\sigma_{t\bar{t}}=5.1 \pm 1.5 pb and σttˉ=9.2±4.3\sigma_{t\bar{t}}=9.2 \pm 4.3 pb using the secondary vertex and the lepton tagging algorithms, respectively. Finally, we combine these results with those from other ttˉt\bar{t} decay channels and obtain σttˉ=6.51.4+1.7\sigma_{t\bar{t}} = 6.5^{+1.7}_{-1.4} pb.Comment: The manuscript consists of 130 pages, 35 figures and 42 tables in RevTex. The manuscript is submitted to Physical Review D. Fixed typo in author lis

    Establishing Lagrangian connections between observations within air masses crossing the Atlantic during the International Consortium for Atmospheric Research on Transport and Transformation experiment

    Get PDF
    The ITCT-Lagrangian-2K4 (Intercontinental Transport and Chemical Transformation) experiment was conceived with an aim to quantify the effects of photochemistry and mixing on the transformation of air masses in the free troposphere away from emissions. To this end, attempts were made to intercept and sample air masses several times during their journey across the North Atlantic using four aircraft based in New Hampshire (USA), Faial (Azores) and Creil (France). This article begins by describing forecasts from two Lagrangian models that were used to direct the aircraft into target air masses. A novel technique then identifies Lagrangian matches between flight segments. Two independent searches are conducted: for Lagrangian model matches and for pairs of whole air samples with matching hydrocarbon fingerprints. The information is filtered further by searching for matching hydrocarbon samples that are linked by matching trajectories. The quality of these "coincident matches'' is assessed using temperature, humidity and tracer observations. The technique pulls out five clear Lagrangian cases covering a variety of situations and these are examined in detail. The matching trajectories and hydrocarbon fingerprints are shown, and the downwind minus upwind differences in tracers are discussed
    corecore