42 research outputs found
Surface Potential Modulation in Boronate-Functionalized Magnetic Nanoparticles Reveals Binding Interactions: Toward Magnetophoretic Capture/Quantitation of Sugars from Extracellular Matrix
Phenylboronic acids (BAs) are important synthetic receptors that bind reversibly to cis-diols enabling their use in molecular sensing. When conjugated to magnetic iron oxide nanoparticles, BAs have potential for application in separations and enrichment. Realizing this will require a new understanding of their inherent binding modes and measurement of their binding capacity and their stability in/extractability from complex environments. In this work, 3-aminophenylboronic acid was functionalized to superparamagnetic iron oxide nanoparticles (MNPs, core diameter 8.9 nm) to provide stable aqueous suspensions of functionalized particles (BA-MNPs). The progress of sugar binding and its impact on BA-MNP colloidal stability were monitored through the pH-dependence of hydrodynamic size and zeta potential during incubation with a range of saccharides. This provided the first direct observation of boronate ionization pKa in grafted BA, which in the absence of sugar shifted to a slightly more basic pH than free BA. On exposure to sugar solutions under MNP-limiting conditions, pKa moved progressively to lower pH as maximum capacity was gradually attained. The pKa shift is shown to be greater for sugars with greater BA binding affinity, and on-particle sugar exchange effects were inferred. Colloidal dispersion of BA-MNPs after binding was shown for all sugars at all pHs studied, which enabled facile magnetic extraction of glucose from agarose and cultured extracellular matrix expanded in serum-free media. Bound glucose, quantified following magnetophoretic capture, was found to be proportional to the solution glucose content under glucose-limiting conditions expected for the application. The implications for the development of MNP-immobilized ligands for selective magnetic biomarker capture and quantitation from the extracellular environment are discussed.The authors would like to acknowledge the financial support from Science Foundation Ireland under Grant Agreements 13/CDA/2155 and 16/IA/4584, the work was also co-funded under the European Regional Development Fund (13/RC/2073_2). P.B.P. acknowledges the Government of Spain - Ministry of Education, Culture and Sports for the FPU grant (FPU14/04589)
Impact of dynamic sub-populations within grafted chains on the protein binding and colloidal stability of PEGylated nanoparticles
Polyethylene glycol grafting has played a central role in preparing the surfaces of nano-probes for biological interaction, to extend blood circulation times and to modulate protein recognition and cellular uptake. However, the role of PEG graft dynamics and conformation in determining surface recognition processes is poorly understood primarily due to the absence of a microscopic picture of the surface presentation of the polymer. Here a detailed NMR analysis reveals three types of dynamic ethylene glycol units on PEG-grafted SiO2 nanoparticles (NPs) of the type commonly evaluated as long-circulating theranostic nano-probes; a narrow fraction with fast dynamics associated with the chain ends; a broadened fraction spectrally overlapped with the former arising from those parts of the chain experiencing some dynamic restriction; and a fraction too broad to be observed in the spectrum arising from units closer to the surface/graft which undergo slow motion on the NMR timescale. We demonstrate that ethylene glycol units transition between fractions as a function of temperature, core size, PEG chain length and surface coverage and demonstrate how this distribution affects colloidal stability and protein uptake. The implications of the findings for biological application of grafted nanoparticles are discussed in the context of accepted models for surface ligand conformation
Monodisperse magnetic nanoparticle assemblies prepared at scale by competitive stabiliser desorption
We report a scalable and reproducible method to assemble magnetic nanoparticle clusters from oleic acid stabilised iron oxide nanoparticles. By controlling the surface coverage of oleic acid on the nanoparticle surface we have achieved controlled nanoparticle assembly following exposure of the suspension to a substrate layer of cyanopropyl-modified silica which competes for the ligand. The clusters can be formed reproducibly and their final size can be selected over a range covering almost two orders of magnitude. Most unusually, the relative monodispersity of the cluster suspension is improved compared to the starting
nanoparticle suspension, and the yield is close to 100%. Interestingly, we find that the kinetics of assembly is not altered by scaling up, which is surprising for a complex process involving molecular transport. Kinetic studies provided mechanistic insight into the process, and suggested general requirements for controlled assembly of other nanoparticle types
Electrostatically modulated magnetophoretic transport of functionalised iron-oxide nanoparticles through hydrated networks
Factors that determine magnetophoretic transport of magnetic nanoparticles (MNPs) through hydrated polymer networks under the influence of an external magnetic field gradient were studied. Functionalised iron oxide cores (8.9 nm core diameter) were tracked in real-time as they moved through agarose gels under the influence of an inhomogeneous magnetic field. Terminal magnetophoretic velocities were observed in all cases, these were quantified and found to be highly reproducible and sensitive to the con- ditions. Increasing agarose content reduced magnetophoretic velocity, we attribute this to increasingly tortuous paths through the porous hydrated polymer network and propose a new factor to quantify the tortuosity. The impact of MNP surface functionalisation, charge, network fixed charge content, and ionic strength of the aqueous phase on velocity were studied to separate these effects. For MNPs functionalised with polyethylene glycol (PEG) increasing chain length reduced velocity but the tortuosity extracted, which is a function of the network, was unchanged; validating the approach. For charged citrate- and arginine-functionalised MNPs, magnetophoretic velocities were found to increase for particles with posi- tive and decrease for particles with negative zeta potential. In both cases these effects could be moder- ated by reducing the number of agarose anionic residues and/or increasing the ionic strength of the aqueous phase; conditions under which tortuosity again becomes the critical factor. A model for MNP transport identifying the contributions from the tortuous pore network and from electrostatic effects associated with the pore constrictions is proposed
Size-Controlled Nanoparticle Clusters of Narrow Size- Polydispersity Formed Using Multiple Particle Types Through Competitive Stabilizer Desorption to a Liquid– Liquid Interface
A novel colloidal approach is presented for preparing fully dispersed nanoparticle (NP) assemblies (clusters) of narrow size-polydispersity over a wide range of sizes through irreversible depletion of stabilizing ligands onto a liquid–liquid interface. Unusually, the relative monodispersity of the assemblies continuously improves throughout the process. A detailed kinetics
study into the assembly of iron oxide NP clusters shows that the assembly rate decreases with NP concentration, pinpointing the role of the interface in size focusing. A new protocol for identifying initial conditions that enable controlled assembly is described, which allows extension of the approach to multiple NP types, opening up a general route to colloidally processed materials.
The process uses cheap materials, it is reproducible, robust, and scaleable, and it allows for selection of both particle and cluster size. In the case of assemblies of magnetic iron oxide NPs, these advantages enable tuning of the magnetic properties of the assemblies for applications such as magnetically targetable MRI-trackable agents in biomedicine
The Role of Glutathione S-Transferase GliG in Gliotoxin Biosynthesis in Aspergillus fumigatus
Gliotoxin, a redox-active metabolite, is produced
by the opportunistic fungal pathogen Aspergillus
fumigatus, and its biosynthesis is directed by the
gli gene cluster. Knowledge of the biosynthetic
pathway to gliotoxin, which contains a disulfide
bridge of unknown origin, is limited, although L-Phe
and L-Ser are known biosynthetic precursors. Deletion
of gliG from the gli cluster, herein functionally
confirmed as a glutathione S-transferase, results in
abrogation of gliotoxin biosynthesis and accumulation
of 6-benzyl-6-hydroxy-1-methoxy-3-methylenepiperazine-
2,5-dione. This putative shunt metabolite
from the gliotoxin biosynthetic pathway contains an
intriguing hydroxyl group at C-6, consistent with
a gliotoxin biosynthetic pathway involving thiolation
via addition of the glutathione thiol group to a reactive
acyl imine intermediate. Complementation of gliG
restored gliotoxin production and, unlike gliT, gliG
was found not to be involved in fungal self-protection
against gliotoxin
Covalent functionalization of multi-walled carbon nanotubes with a gadolinium chelate for efficient T1-weighted magnetic resonance imaging
Given the promise of carbon nanotubes (CNTs) for photothermal therapy, drug delivery, tissue engineering, and gene therapy, there is a need for non-invasive imaging methods to monitor CNT distribution and fate in the body. In this study, non-ionizing whole-body high field magnetic resonance imaging (MRI) is used to follow the distribution of water-dispersible non-toxic functionalized CNTs administrated intravenously to mice. Oxidized CNTs are endowed with positive MRI contrast properties by covalent functionalization with the chelating ligand diethylenetriaminepentaacetic dianhydride (DTPA), followed by chelation to Gd. The structural and magnetic properties, MR relaxivities, cellular uptake, and application for MRI cell imaging of Gd-CNTs in comparison to the precursor oxidized CNTs are evaluated. Despite the intrinsic T contrast of oxidized CNTs internalized in macrophages, the anchoring of paramagnetic gadolinium onto the nanotube sidewall allows efficient T contrast and MR signal enhancement, which is preserved after CNT internalization by cells. Hence, due to their high dispersibility, Gd-CNTs have the potential to produce positive contrast in vivo following injection into the bloodstream. The uptake of Gd-CNTs in the liver and spleen is assessed using MRI, while rapid renal clearance of extracellular Gd-CNTs is observed, confirming the evidences of other studies using different imaging modalities
Liquid phase pulsed laser ablation: a route to fabricate different carbon nanostructures
Carbon nanostructures in various forms and sizes, and with different speciation properties have been prepared from graphite by Liquid Phase - Pulsed Laser Ablation (LP-PLA) using a high frequency Nd:YAG laser. High energy densities and pulse repetition frequencies of up to 10 kHz were used in this ablation process to produce carbon nanomaterials with unique chemical structures. Dynamic Light Scattering (DLS), micro-Raman and High-Resolution Transmission Electron Microscopy (HRTEM) were used to confirm the size distribution, morphology, chemical bonding, and crystallinity of these nanostructures. This article demonstrates how the fabrication process affects measured characteristics of the produced carbon nanomaterials. The obtained particle properties have potential use for various applications including biochemical speciation applications
Nanoparticle clusters: assembly and control over internal order, current capabilities and future potential
The current state of the art in the use of colloidal methods to form nanoparticle assemblies, or clusters (NPCs) is reviewed. The focus is on the two-step approach, which exploits the advantages of bottom-up wet chemical NP synthesis procedures, with subsequent colloidal destabilization to trigger assembly in a controlled manner. Recent successes in the application of functional NPCs with enhanced emergent collective properties for a wide range of applications, including in biomedical detection, surface enhanced Raman scattering (SERS) enhancement, photocatalysis, and light harvesting, are highlighted. The role of the NP–NP interactions in the formation of monodisperse ordered clusters is described and the different assembly processes from a wide range of literature sources are classified according to the nature of the perturbation from the initial equilibrium state (dispersed NPs). Finally, the future for the field and the anticipated role of computational approaches in developing next-generation functional NPCs are briefly discussed