96 research outputs found
Recommended from our members
Stabilization and reuse of heavy metal contaminated soils by means of quicklime sulfate salt treatment. Final report, September 1992--February 1995
Capillary and hydraulic flows of water in porous media contaminated by heavy metal species often result in severe aquifer contamination. In the present study a chemical admixture stabilization approach is proposed, where heavy metal stabilization/immobilization is achieved by means of quicklime-based treatment. Both in-situ treatment by injection and on-site stabilization by excavation, mixing, and compaction will be investigated. In addition, the potential to reuse the resulting stabilized material as readily available construction material will also be investigated. The heavy metals under study include: arsenic, chromium, lead, and mercury. The proposed technical approach consists of three separate phases. During phase A, both artificial and naturally occurring contaminated soil mixes were treated, and then tested for stress-strain properties, leachability, micromorphology, mineralogical composition, permeability, setting time, and durability. In such a way, the effectiveness of the proposed remediation technology was verified, the treatment approach was optimized, and the underlying mechanisms responsible for stabilization were established. During phase B, the proposed technology will be tested for two DOE-site subscale systems, involving naturally occurring contaminated soil, using the same testing methodology as the one outlined for phase A. Provided that the proposed technology is proven effective for the subscale systems, a field application will be demonstrated. Again process quality monitoring will be performed by testing undisturbed samples collected from the treated sites, in the same fashion as for the previous phases. Following completion of the proposed study, a set of comprehensive guidelines for field applications will be developed. 42 refs., 196 figs., 26 tabs
Behavior policy learning: Learning multi-stage tasks via solution sketches and model-based controllers
Multi-stage tasks are a challenge for reinforcement learning methods, and require either specific task knowledge (e.g., task segmentation) or big amount of interaction times to be learned. In this paper, we propose Behavior Policy Learning (BPL) that effectively combines 1) only few solution sketches, that is demonstrations without the actions, but only the states, 2) model-based controllers, and 3) simulations to effectively solve multi-stage tasks without strong knowledge about the underlying task. Our main intuition is that solution sketches alone can provide strong data for learning a high-level trajectory by imitation, and model-based controllers can be used to follow this trajectory (we call it behavior) effectively. Finally, we utilize robotic simulations to further improve the policy and make it robust in a Sim2Real style. We evaluate our method in simulation with a robotic manipulator that has to perform two tasks with variations: 1) grasp a box and place it in a basket, and 2) re-place a book on a different level within a bookcase. We also validate the Sim2Real capabilities of our method by performing real-world experiments and realistic simulated experiments where the objects are tracked through an RGB-D camera for the first task
Recommended from our members
Use of Micro X-Ray Absorption Spectroscopy and Diffraction to Delineate Cr(VI) Speciation in COPR
The speciation of Cr(VI) in Cromite Ore Processing Residue was investigated by means of bulk XRD, and a combination of micro-XRF, -XAS and -XRD at the Advanced Light Source (ALS), Berkeley, CA, U.S.A.. Bulk XRD yielded one group of phases that contained explicitly Cr(VI) in their structure, Calcium Aluminum Chromium Oxide Hydrates, accounting for 60% of the total Cr(VI). Micro-analyses at ALS yielded complimentary information, confirming that hydrogarnets and hydrotalcites, two mineral groups that can host Cr(VI) in their structure by substitution, were indeed Cr(VI) sinks. Chromatite (CaCrO4) was also identified by micro-XRD, which was not possible with bulk methods due to its low content. The acquisition of micro-XRF elemental maps enabled not only the identification of Cr(VI)-binding phases, but also the understanding of their location within the matrix. This information is invaluable when designing Cr(VI) treatment, to optimize release and availability for reduction
Accelerated swell testing of artificial sulfate bearing lime stabilised cohesive soils
This paper reports on the physico-chemical response of two lime stabilised sulfate bearing artificial soils subject to the European Accelerated Volumetric Swell Test (EN13286-49). At various intervals during the test, a specimen was removed and subject to compositional and microstructural analysis. Ettringite was formed by both soils types, but with significant differences in crystal morphology. Ettringite crystals formed from kaolin based soils were very small, colloidal in size and tended to form on the surface of other particles. Conversely, those formed from montmorillonite were relatively large and typically formed away from the surface in the pore solution. It was concluded that the mechanism by which ettringite forms is determined by the hydroxide ion concentration in the pore solution and the fundamental structure of the bulk clay. In the kaolin soil, ettringite forms by a topochemical mechanism and expands by crystal swelling. In the montmorillonite soil, it forms by a through-solution mechanism and crystal growth
Opportunities and challenges in the use of coal fly ash for soil improvements – a review
Coal fly ash (CFA), a by-product of coal combustion has been regarded as a problematic solid waste, mainly due to its potentially toxic trace elements, PTEs (e.g. Cd, Cr, Ni, Pb) and organic compounds (e.g. PCBs, PAHs) content. However, CFA is a useful source of essential plant nutrients (e.g. Ca, Mg, K, P, S, B, Fe, Cu and Zn). Uncontrolled land disposal of CFA is likely to cause undesirable changes in soil conditions, including contamination with PTEs, PAHs and PCBs. Prudent CFA land application offers considerable opportunities, particularly for nutrient supplementation, pH correction and ameliorating soil physical conditions (soil compaction, water retention and drainage). Since CFA contains little or no N and organic carbon, and CFA-borne P is not readily plant available, a mixture of CFA and manure or sewage sludge (SS) is better suited than CFA alone. Additionally, land application of such a mixture can mitigate the mobility of SS-borne PTEs, which is known to increase following cessation of SS application. Research analysis further shows that application of alkaline CFA with or without other amendments can help remediate at least marginally metal contaminated soils by immobilisation of mobile metal forms. CFA land application with SS or other source of organic carbon, N and P can help effectively reclaim/restore mining-affected lands. Given the variability in the nature and composition of CFA (pH, macro- and micro-nutrients) and that of soil (pH, texture and fertility), the choice of CFA (acidic or alkaline and its application rate) needs to consider the properties and problems of the soil. CFA can also be used as a low cost sorbent for the removal of organic and inorganic contaminants from wastewater streams; the disposal of spent CFA however can pose further challenges. Problems in CFA use as a soil amendment occur when it results in undesirable change in soil pH, imbalance in nutrient supply, boron toxicity in plants, excess supply of sulphate and PTEs. These problems, however, are usually associated with excess or inappropriate CFA applications. The levels of PAHs and PCBs in CFA are generally low; their effects on soil biota, uptake by plants and soil persistence, however, need to be assessed. In spite of this, co-application of CFA with manure or SS to land enhances its effectiveness in soil improvements
- …