587 research outputs found

    Inferring telescope polarization properties through spectral lines without linear polarization

    Full text link
    We present a technique to determine the polarization properties of a telescope through observations of spectral lines that have no intrinsic linear polarization signals. For such spectral lines, any observed linear polarization must be induced by the telescope optics. We apply the technique to observations taken with the SPINOR at the DST and demonstrate that we can retrieve the characteristic polarization properties of the DST at three wavelengths of 459, 526, and 615 nm. We determine the amount of crosstalk between the intensity Stokes I and the linear and circular polarization states Stokes Q, U, and V, and between Stokes V and Stokes Q and U. We fit a set of parameters that describe the polarization properties of the DST to the observed crosstalk values. The values for the ratio of reflectivities X and the retardance tau match those derived with the telescope calibration unit within the error bars. Residual crosstalk after applying a correction for the telescope polarization stays at a level of 3-10%. We find that it is possible to derive the parameters that describe the polarization properties of a telescope from observations of spectral lines without intrinsic linear polarization signal. Such spectral lines have a dense coverage (about 50 nm separation) in the visible part of the spectrum (400-615 nm), but none were found at longer wavelengths. Using spectral lines without intrinsic linear polarization is a promising tool for the polarimetric calibration of current or future solar telescopes such as DKIST.Comment: 22 pages, 24 figures, accepted for publication in A&

    A photoelectron spectroscopy study of the electronic structure evolution in CuInSe2-related compounds at changing copper content

    Get PDF
    Evolution of the valence-band structure at gradually increasing copper content has been analysed by x-ray photoelectron spectroscopy (XPS) in In2Se3, CuIn5Se8, CuIn3Se5, and CuInSe2 single crystals. A comparison of these spectra with calculated total and angular-momentum resolved density-of-states (DOS) revealed the main trends of this evolution. The formation of the theoretically predicted gap between the bonding and non-bonding states has been observed in both experimental XPS spectra and theoretical DOS

    Effects of Censoring on Parameter Estimates and Power in Genetic Modeling

    Get PDF

    Statistical power to detect genetic and environmental influences in the presence of data missing at random.

    Get PDF
    We study the situation in which a cheap measure (X) is observed in a large, representative twin sample, and a more expensive measure (Y) is observed in a selected subsample. The aim of this study is to investigate the optimal selection design in terms of the statistical power to detect genetic and environmental influences on the variance of Y and on the covariance of X and Y. Data were simulated for 4000 dizygotic and 2000 monozygotic twins. Missingness (87% vs. 97%) was then introduced in accordance with 7 selection designs: (i) concordant low + individual high design; (ii) extreme concordant design; (iii) extreme concordant and discordant design (EDAC); (iv) extreme discordant design; (v) individual score selection design; (vi) selection of an optimal number of MZ and DZ twins; and (vii) missing completely at random. The statistical power to detect the influence of additive and dominant genetic and shared environmental effects on the variance of Y and on the covariance between X and Y was investigated. The best selection design is the individual score selection design. The power to detect additive genetic effects is high irrespective of the percentage of missingness or selection design. The power to detect shared environmental effects is acceptable when the percentage of missingness is 87%, but is low when the percentage of missingness is 97%, except for the individual score selection design, in which the power remains acceptable. The power to detect D is low, irrespective of selection design or percentage of missingness. The individual score selection design is therefore the best design for detecting genetic and environmental influences on the variance of Y and on the covariance of X and Y. However, the EDAC design may be preferred when an additional purpose of a study is to detect quantitative trait loci effects

    Stability transitions for axisymmetric relative equilibria of Euclidean symmetric Hamiltonian systems

    Get PDF
    In the presence of noncompact symmetry, the stability of relative equilibria under momentum-preserving perturbations does not generally imply robust stability under momentum-changing perturbations. For axisymmetric relative equilibria of Hamiltonian systems with Euclidean symmetry, we investigate different mechanisms of stability: stability by energy-momentum confinement, KAM, and Nekhoroshev stability, and we explain the transitions between these. We apply our results to the Kirchhoff model for the motion of an axisymmetric underwater vehicle, and we numerically study dissipation induced instability of KAM stable relative equilibria for this system.Comment: Minor revisions. Typographical errors correcte

    Printed elastic membranes for multimodal pacing and recording of human stem-cell-derived cardiomyocytes

    Get PDF
    Bioelectronic interfaces employing arrays of sensors and bioactuators are promising tools for the study, repair and engineering of cardiac tissues. They are typically constructed from rigid and brittle materials processed in a cleanroom environment. An outstanding technological challenge is the integration of soft materials enabling a closer match to the mechanical properties of biological cells and tissues. Here we present an algorithm for direct writing of elastic membranes with embedded electrodes, optical waveguides and microfluidics using a commercial 3D printing system and a palette of silicone elastomers. As proof of principle, we demonstrate interfacing of cardiomyocytes derived from human induced pluripotent stem cells (hiPSCs), which are engineered to express Channelrhodopsin-2. We demonstrate electrical recording of cardiomyocyte field potentials and their concomitant modulation by optical and pharmacological stimulation delivered via the membrane. Our work contributes a simple prototyping strategy with potential applications in organ-on-chip or implantable systems that are multi-modal and mechanically soft

    A review of implant provision for hypodontia patients within a Scottish referral centre

    Get PDF
    Background: Implant treatment to replace congenitally missing teeth often involves multidisciplinary input in a secondary care environment. High quality patient care requires an in-depth knowledge of treatment requirements. Aim: This service review aimed to determine treatment needs, efficiency of service and outcomes achieved in hypodontia patients. It also aimed to determine any specific difficulties encountered in service provision, and suggest methods to overcome these. Methods: Hypodontia patients in the Unit of Periodontics of the Scottish referral centre under consideration, who had implant placement and fixed restoration, or review completed over a 31 month period, were included. A standardised data collection form was developed and completed with reference to the patient's clinical record. Information was collected with regard to: the indication for implant treatment and its extent; the need for, complexity and duration of orthodontic treatment; the need for bone grafting and the techniques employed and indicators of implant success. Conclusion: Implant survival and success rates were high for those patients reviewed. Incidence of biological complications compared very favourably with the literature

    Unmet needs in patients with first-episode schizophrenia: a longitudinal perspective

    Get PDF
    Background This study aimed to identify the course of unmet needs by patients with a first episode of schizophrenia and to determine associated variables. Method We investigated baseline assessments in the European First Episode Schizophrenia Trial (EUFEST) and also follow-up interviews at 6 and 12 months. Latent class growth analysis was used to identify patient groups based on individual differences in the development of unmet needs. Multinomial logistic regression determined the predictors of group membership. Results Four classes were identified. Three differed in their baseline levels of unmet needs whereas the fourth had a marked decrease in such needs. Main predictors of class membership were prognosis and depression at baseline, and the quality of life and psychosocial intervention at follow-up. Depression at follow-up did not vary among classes. Conclusions We identified subtypes of patients with different courses of unmet needs. Prognosis of clinical improvement was a better predictor for the decline in unmet needs than was psychopathology. Needs concerning social relationships were particularly persistent in patients who remained high in their unmet needs and who lacked additional psychosocial treatmen

    Orthotopic liver transplantation in glycogen storage disease type la: Perioperative glucose and lactate homeostasis

    Get PDF
    Abstract Glycogen storage disease type 1a (GSD 1a) is a rare inborn error of metabolism. It causes severe fasting intolerance and lactic acidosis due to the deficiency of glucose-6-phosphatase enzyme. Blood glucose and lactate concentrations from 2 patients with GSD 1a were retrospectively compared to a control group of patients with familial amyloid polyneuropathy. Carbohydrate intake and infusions were compared to experimental data based on stable isotope studies. Perioperative lactate concentrations were significantly higher in our 2 patients with GSD 1a (median 15.0 mmol/L; range 9.9-22.0 mmol/L) versus 8 controls. In one patient, despite normal blood glucose concentrations, lactate acidosis was probably caused by a combination of the disease itself, insufficient (par)enteral carbohydrate intake, Ringer lactate infusions, and circulatory insufficiency. Patients with GSD 1a carry an increased risk of lactic acidosis during orthotopic liver transplantation compared to non-GSD patients. Multidisciplinary perioperative care is essential to prevent significant complications

    Segment-Wise Genome-Wide Association Analysis Identifies a Candidate Region Associated with Schizophrenia in Three Independent Samples

    Get PDF
    Recent studies suggest that variation in complex disorders (e.g., schizophrenia) is explained by a large number of genetic variants with small effect size (Odds Ratio∼1.05–1.1). The statistical power to detect these genetic variants in Genome Wide Association (GWA) studies with large numbers of cases and controls (∼15,000) is still low. As it will be difficult to further increase sample size, we decided to explore an alternative method for analyzing GWA data in a study of schizophrenia, dramatically reducing the number of statistical tests. The underlying hypothesis was that at least some of the genetic variants related to a common outcome are collocated in segments of chromosomes at a wider scale than single genes. Our approach was therefore to study the association between relatively large segments of DNA and disease status. An association test was performed for each SNP and the number of nominally significant tests in a segment was counted. We then performed a permutation-based binomial test to determine whether this region contained significantly more nominally significant SNPs than expected under the null hypothesis of no association, taking linkage into account. Genome Wide Association data of three independent schizophrenia case/control cohorts with European ancestry (Dutch, German, and US) using segments of DNA with variable length (2 to 32 Mbp) was analyzed. Using this approach we identified a region at chromosome 5q23.3-q31.3 (128–160 Mbp) that was significantly enriched with nominally associated SNPs in three independent case-control samples. We conclude that considering relatively wide segments of chromosomes may reveal reliable relationships between the genome and schizophrenia, suggesting novel methodological possibilities as well as raising theoretical questions
    corecore