14 research outputs found

    HLA class I loss in metachronous metastases prevents continuous T cell recognition of mutated neoantigens in a human melanoma model

    No full text
    T lymphocytes against tumor-specific mutated neoantigens can induce tumor regression. Also, the size of the immunogenic cancer mutanome is supposed to correlate with the clinical efficacy of checkpoint inhibition. Herein, we studied the susceptibility of tumor cell lines from lymph node metastases occurring in a melanoma patient over several years towards blood-derived, neoantigen-specific CD8+ T cells. In contrast to a cell line established during early stage III disease, all cell lines generated at later time points from stage IV metastases exhibited partial or complete loss of HLA class I expression. Whole exome and transcriptome sequencing of the four tumor lines and a germline control were applied to identify expressed somatic single nucleotide substitutions (SNS), insertions and deletions (indels). Candidate peptides encoded by these variants and predicted to bind to the patient’s HLA class I alleles were synthesized and tested for recognition by autologous mixed lymphocyte-tumor cell cultures (MLTCs). Peptides from four mutated proteins, HERPUD1G161S, INSIG1S238F, MMS22LS437F and PRDM10S1050F, were recognized by MLTC responders and MLTC-derived T cell clones restricted by HLA-A*24:02 or HLA-B*15:01. Intracellular peptide processing was verified with transfectants. All four neoantigens could only be targeted on the cell line generated during early stage III disease. HLA loss variants of any kind were uniformly resistant. These findings corroborate that, although neoantigens represent attractive therapeutic targets, they also contribute to the process of cancer immunoediting as a serious limitation to specific T cell immunotherapy

    Letermovir prophylaxis is effective in preventing cytomegalovirus reactivation after allogeneic hematopoietic cell transplantation: single-center real-world data

    No full text
    Morbidity and mortality after allogeneic hematopoietic cell transplantation (alloHCT) are still essentially affected by reactivation of cytomegalovirus (CMV). We evaluated 80 seropositive patients transplanted consecutively between March 2018 and March 2019 who received letermovir (LET) prophylaxis from engraftment until day +100 and retrospectively compared them with 80 patients without LET allografted between January 2017 and March 2018. The primary endpoint of this study was the cumulative incidence (CI) of clinically significant CMV infection (CS-CMVi) defined as CMV reactivation demanding preemptive treatment or CMV disease. With 14% CI of CS-CMVi at day +100 (11 events) was significantly lower in the LET cohort when compared to the control group (33 events, 41%; HR 0.29; p < 0.001). Whereas therapy with foscarnet could be completely avoided in the LET group, 7 out of 80 patients in the control cohort received foscarnet, resulting in 151 extra in-patient days for foscarnet administration (p = 0.002). One-year overall survival was 72% in the control arm vs 84% in the LET arm (HR 0.75 [95%CI 0.43-1.30]; p < 0.306). This study confirms efficacy and safety of LET for prophylaxis of CS-CMVi after alloHCT in a real-world setting, resulting in a significant patient benefit by reducing hospitalization needs and exposure to potentially toxic antiviral drugs for treatment of CMV reactivation

    Treatment of adult ALL patients with third-generation CD19-directed CAR T cells: results of a pivotal trial

    No full text
    Abstract Background Third-generation chimeric antigen receptor (CAR)-engineered T cells (CARTs) might improve clinical outcome of patients with B cell malignancies. This is the first report on a third-generation CART dose-escalating, phase-1/2 investigator-initiated trial treating adult patients with refractory and/or relapsed (r/r) acute lymphoblastic leukemia (ALL). Methods Thirteen patients were treated with escalating doses of CD19-directed CARTs between 1 × 106 and 50 × 106 CARTs/m2. Leukapheresis, manufacturing and administration of CARTs were performed in-house. Results For all patients, CART manufacturing was feasible. None of the patients developed any grade of Immune effector cell-associated neurotoxicity syndrome (ICANS) or a higher-grade (≥ grade III) catokine release syndrome (CRS). CART expansion and long-term CART persistence were evident in the peripheral blood (PB) of evaluable patients. At end of study on day 90 after CARTs, ten patients were evaluable for response: Eight patients (80%) achieved a complete remission (CR), including five patients (50%) with minimal residual disease (MRD)-negative CR. Response and outcome were associated with the administered CART dose. At 1-year follow-up, median overall survival was not reached and progression-free survival (PFS) was 38%. Median PFS was reached on day 120. Lack of CD39-expression on memory-like T cells was more frequent in CART products of responders when compared to CART products of non-responders. After CART administration, higher CD8 + and γδ-T cell frequencies, a physiological pattern of immune cells and lower monocyte counts in the PB were associated with response. Conclusion In conclusion, third-generation CARTs were associated with promising clinical efficacy and remarkably low procedure-specific toxicity, thereby opening new therapeutic perspectives for patients with r/r ALL. Trial registration This trial was registered at www.clinicaltrials.gov as NCT03676504

    Metaheuristics for rich portfolio optimisation and risk management: Current state and future trends

    No full text
    corecore