17 research outputs found

    A randomized, phase III trial of capecitabine plus bevacizumab (Cape-Bev) versus capecitabine plus irinotecan plus bevacizumab (CAPIRI-Bev) in first-line treatment of metastatic colorectal cancer: The AIO KRK 0110 Trial/ML22011 Trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several randomized trials have indicated that combination chemotherapy applied in metastatic colorectal cancer (mCRC) does not significantly improve overall survival when compared to the sequential use of cytotoxic agents (CAIRO, MRC Focus, FFCD 2000-05). The present study investigates the question whether this statement holds true also for bevacizumab-based first-line treatment including escalation- and de-escalation strategies.</p> <p>Methods/Design</p> <p>The AIO KRK 0110/ML22011 trial is a two-arm, multicenter, open-label randomized phase III trial comparing the efficacy and safety of capecitabine plus bevacizumab (Cape-Bev) versus capecitabine plus irinotecan plus bevacizumab (CAPIRI-Bev) in the first-line treatment of metastatic colorectal cancer. Patients with unresectable metastatic colorectal cancer, Eastern Cooperative Oncology Group (ECOG) performance status 0-1, will be assigned in a 1:1 ratio to receive either capecitabine 1250 mg/m<sup>2 </sup>bid for 14d (d1-14) plus bevacizumab 7.5 mg/kg (d1) q3w (Arm A) or capecitabine 800 mg/m<sup>2 </sup>BID for 14d (d1-14), irinotecan 200 mg/m<sup>2 </sup>(d1) and bevacizumab 7.5 mg/kg (d1) q3w (Arm B). Patients included into this trial are required to consent to the analysis of tumour tissue and blood for translational investigations. In Arm A, treatment escalation from Cape-Bev to CAPIRI-Bev is recommended in case of progressive disease (PD). In Arm B, de-escalation from CAPIRI-Bev to Cape-Bev is possible after 6 months of treatment or in case of irinotecan-associated toxicity. Re-escalation to CAPIRI-Bev after PD is possible. The primary endpoint is time to failure of strategy (TFS). Secondary endpoints are overall response rate (ORR), overall survival, progression-free survival, safety and quality of life.</p> <p>Conclusion</p> <p>The AIO KRK 0110 trial is designed for patients with disseminated, but asymptomatic mCRC who are not potential candidates for surgical resection of metastasis. Two bevacizumab-based strategies are compared: one starting as single-agent chemotherapy (Cape-Bev) allowing escalation to CAPIRI-Bev and another starting with combination chemotherapy (CAPIRI-Bev) and allowing de-escalation to Cape-Bev and subsequent re-escalation if necessary.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov Identifier <a href="http://www.clinicaltrials.gov/ct2/show/NCT01249638">NCT01249638</a></p> <p>EudraCT-No.: 2009-013099-38</p

    Multiple Myeloma Treatment in Real-world Clinical Practice : Results of a Prospective, Multinational, Noninterventional Study

    Get PDF
    Funding Information: The authors would like to thank all patients and their families and all the EMMOS investigators for their valuable contributions to the study. The authors would like to acknowledge Robert Olie for his significant contribution to the EMMOS study. Writing support during the development of our report was provided by Laura Mulcahy and Catherine Crookes of FireKite, an Ashfield company, a part of UDG Healthcare plc, which was funded by Millennium Pharmaceuticals, Inc, and Janssen Global Services, LLC. The EMMOS study was supported by research funding from Janssen Pharmaceutical NV and Millennium Pharmaceuticals, Inc. Funding Information: The authors would like to thank all patients and their families and all the EMMOS investigators for their valuable contributions to the study. The authors would like to acknowledge Robert Olie for his significant contribution to the EMMOS study. Writing support during the development of our report was provided by Laura Mulcahy and Catherine Crookes of FireKite, an Ashfield company, a part of UDG Healthcare plc, which was funded by Millennium Pharmaceuticals, Inc, and Janssen Global Services, LLC. The EMMOS study was supported by research funding from Janssen Pharmaceutical NV and Millennium Pharmaceuticals, Inc. Funding Information: M.M. has received personal fees from Janssen, Celgene, Amgen, Bristol-Myers Squibb, Sanofi, Novartis, and Takeda and grants from Janssen and Sanofi during the conduct of the study. E.T. has received grants from Janssen and personal fees from Janssen and Takeda during the conduct of the study, and grants from Amgen, Celgene/Genesis, personal fees from Amgen, Celgene/Genesis, Bristol-Myers Squibb, Novartis, and Glaxo-Smith Kline outside the submitted work. M.V.M. has received personal fees from Janssen, Celgene, Amgen, and Takeda outside the submitted work. M.C. reports honoraria from Janssen, outside the submitted work. M. B. reports grants from Janssen Cilag during the conduct of the study. M.D. has received honoraria for participation on advisory boards for Janssen, Celgene, Takeda, Amgen, and Novartis. H.S. has received honoraria from Janssen-Cilag, Celgene, Amgen, Bristol-Myers Squibb, Novartis, and Takeda outside the submitted work. V.P. reports personal fees from Janssen during the conduct of the study and grants, personal fees, and nonfinancial support from Amgen, grants and personal fees from Sanofi, and personal fees from Takeda outside the submitted work. W.W. has received personal fees and grants from Amgen, Celgene, Novartis, Roche, Takeda, Gilead, and Janssen and nonfinancial support from Roche outside the submitted work. J.S. reports grants and nonfinancial support from Janssen Pharmaceutical during the conduct of the study. V.L. reports funding from Janssen Global Services LLC during the conduct of the study and study support from Janssen-Cilag and Pharmion outside the submitted work. A.P. reports employment and shareholding of Janssen (Johnson & Johnson) during the conduct of the study. C.C. reports employment at Janssen-Cilag during the conduct of the study. C.F. reports employment at Janssen Research and Development during the conduct of the study. F.T.B. reports employment at Janssen-Cilag during the conduct of the study. The remaining authors have stated that they have no conflicts of interest. Publisher Copyright: © 2018 The AuthorsMultiple myeloma (MM) remains an incurable disease, with little information available on its management in real-world clinical practice. The results of the present prospective, noninterventional observational study revealed great diversity in the treatment regimens used to treat MM. Our results also provide data to inform health economic, pharmacoepidemiologic, and outcomes research, providing a framework for the design of protocols to improve the outcomes of patients with MM. Background: The present prospective, multinational, noninterventional study aimed to document and describe real-world treatment regimens and disease progression in multiple myeloma (MM) patients. Patients and Methods: Adult patients initiating any new MM therapy from October 2010 to October 2012 were eligible. A multistage patient/site recruitment model was applied to minimize the selection bias; enrollment was stratified by country, region, and practice type. The patient medical and disease features, treatment history, and remission status were recorded at baseline, and prospective data on treatment, efficacy, and safety were collected electronically every 3 months. Results: A total of 2358 patients were enrolled. Of these patients, 775 and 1583 did and did not undergo stem cell transplantation (SCT) at any time during treatment, respectively. Of the patients in the SCT and non-SCT groups, 49%, 21%, 14%, and 15% and 57%, 20%, 12% and 10% were enrolled at treatment line 1, 2, 3, and ≥ 4, respectively. In the SCT and non-SCT groups, 45% and 54% of the patients had received bortezomib-based therapy without thalidomide/lenalidomide, 12% and 18% had received thalidomide/lenalidomide-based therapy without bortezomib, and 30% and 4% had received bortezomib plus thalidomide/lenalidomide-based therapy as frontline treatment, respectively. The corresponding proportions of SCT and non-SCT patients in lines 2, 3, and ≥ 4 were 45% and 37%, 30% and 37%, and 12% and 3%, 33% and 27%, 35% and 32%, and 8% and 2%, and 27% and 27%, 27% and 23%, and 6% and 4%, respectively. In the SCT and non-SCT patients, the overall response rate was 86% to 97% and 64% to 85% in line 1, 74% to 78% and 59% to 68% in line 2, 55% to 83% and 48% to 60% in line 3, and 49% to 65% and 36% and 45% in line 4, respectively, for regimens that included bortezomib and/or thalidomide/lenalidomide. Conclusion: The results of our prospective study have revealed great diversity in the treatment regimens used to manage MM in real-life practice. This diversity was linked to factors such as novel agent accessibility and evolving treatment recommendations. Our results provide insight into associated clinical benefits.publishersversionPeer reviewe

    Value of infliximab (Remicade®) in patients with low-risk myelodysplastic syndrome: final results of a randomized phase II trial (EORTC trial 06023) of the EORTC Leukemia Group

    Get PDF
    Tumor-necrosis factor alpha activity has been correlated to ineffective erythropoiesis in lower risk myelodysplastic syndromes. Infliximab (Remicade®) is an anti-tumor necrosis factor alpha chimeric antibody that is used in the treatment of patients with rheumatoid arthritis or Crohn’s disease. Forty-six patients with myelodysplastic syndromes and a relatively low risk of developing acute leukemia were included in a randomized phase II study assessing the therapeutic activity of two dosages of infliximab administration (3 mg/kg vs. 5 mg/kg). The primary end point was the response rate. Responses were observed in 3 of 22 patients (13.1%) randomized to the 3 mg/kg arm, versus 0 of 21 patients randomized in the 5 mg/kg arm. According to the statistical design of the current study, neither of the two infliximab dose schedules tested showed sufficient activity as a single agent in this cohort of unselected patients with early myelodysplastic syndrome

    Response and Disease Dynamics in Untreated Metastatic Colorectal Cancer With Bevacizumab-Based Sequential vs. Combination Chemotherapy—Analysis of the Phase 3 XELAVIRI Trial

    Get PDF
    Introduction: Early tumor shrinkage (ETS), depth of response (DpR), and time to DpR represent exploratory endpoints that may serve as early efficacy parameters and predictors of long-term outcome in metastatic colorectal cancer (mCRC). We analyzed these endpoints in mCRC patients treated with first-line bevacizumab-based sequential (initial fluoropyrimidines) versus combination (initial fluoropyrimidines plus irinotecan) chemotherapy within the phase 3 XELAVIRI trial. Methods: DpR (change from baseline to smallest tumor diameter), ETS (≥20% reduction in tumor diameter at first reassessment), and time to DpR (study randomization to DpR image) were analyzed. We evaluated progression-free survival and overall survival with ETS as stratification parameter according to treatment arm, molecular subgroup, and sex. Results: In 370 patients analyzed, a higher rate of ETS (60.9% vs. 43.5%; p = 0.001) and significantly greater DpR (-40.0% vs. -24.7%; p < 0.001) were observed in the initial combination therapy arm. The improvement was pronounced in RAS/BRAF wild-type tumors. ETS correlated with improved survival irrespective of treatment arm (PFS: p < 0.001; OS: p = 0.012) and molecular subgroup (PFS: p < 0.001; OS: p < 0.001). Male patients in contrast to female patients with ETS had survival benefit (PFS: p < 0.001, HR 0.532; OS: p < 0.001, HR 0.574 vs. PFS: p = 0.107; OS: p = 0.965). Conclusions: Initial irinotecan-based combination therapy with bevacizumab improved ETS and DpR in mCRC patients with a particularly high irinotecan sensitivity of RAS/BRAF wild-type tumors. ETS seems to be a suitable prognostic marker for fluoropyrimidine- and bevacizumab-based combinations in mCRC. This finding was rather driven by male patients, potentially indicating that ETS might be less predictive of long-term outcome in an elderly, female population

    Use of glycosylated recombinant human G-CSF (lenograstim) during and/or after induction chemotherapy in patients 61 years of age and older with acute myeloid leukemia: final results of AML-13, a randomized phase-3 study

    Get PDF
    The role of glycosylated recombinant human granulocyte colony-stimulating factor (G-CSF) in the induction treatment of older adults with acute myeloid leukemia (AML) is still uncertain. In this trial, a total of 722 patients with newly diagnosed AML, median age 68 years, were randomized into 4 treatment arms: (A) no G-CSF; (B) G-CSF during chemotherapy; (C) G-CSF after chemotherapy until day 28 or recovery of polymorphonuclear leukocytes; and (D) G-CSF during and after chemotherapy. The complete remission (CR) rate was 48.9% in group A, 52.2% in group B, 48.3% in group C, and 64.4% in group D. Analysis according to the 2 × 2 factorial design indicated that the CR rate was significantly higher in patients who received G-CSF during chemotherapy (58.3% for groups B + D vs 48.6% for groups A + C; P = .009), whereas no significant difference was observed between groups A + B and C + D (50.6% vs 56.4%, P = .12). In terms of overall survival, no significant differences were observed between the various groups. Patients who received G-CSF after chemotherapy had a shorter time to neutrophil recovery (median, 20 vs 25 days; P < .001) and a shorter hospitalization (mean, 27.2 vs 29.7 days; P < .001). We conclude that although priming with G-CSF can improve the CR rate, the use of G-CSF during and/or after chemotherapy has no effect on the long-term outcome of AML in older patients
    corecore