9 research outputs found

    Role of the Airway Microbiome in Respiratory Infections and Asthma in Children.

    No full text
    The respiratory tract can be colonized with bacterial, fungal, and viral microorganisms, and the whole of the microbiota, their genes, and the surrounding environment is collectively termed the microbiome. Increasing evidence indicates that the respiratory microbiome has an important role in respiratory health and disease and is both impacted by and potentially contributes to the severity of symptomatic respiratory viral infections and asthma in children. A deeper understanding of the complex interactions between bacteria, viruses, and the host will provide further comprehension into the drivers and mechanisms of respiratory health and disease and will impart opportunities for clinical therapies

    Combined in utero hypoxia-ischemia and lipopolysaccharide administration in rats induces chorioamnionitis and a fetal inflammatory response syndrome.

    No full text
    INTRODUCTION: Preterm birth is a major cause of infant morbidity and long-term disability, and is associated with numerous central nervous system (CNS) deficits. Infants exposed to intrauterine inflammation, specifically chorioamnionitis, are at risk for very early preterm birth and neurological complications including cerebral palsy, epilepsy, and behavioral and cognitive deficits. However, placenta-brain axis abnormalities and their relationship to subsequent permanent CNS injury remain poorly defined. METHODS: Intrauterine injury was induced in rats on embryonic day 18 (E18) by transient systemic hypoxia-ischemia (TSHI) and intra-amniotic lipopolysaccharide (LPS) injection. Placenta, brain and serum were collected from E19 to postnatal day 0 (P0). Histology, TUNEL staining, western blot and multiplex immunoassays were used to quantify placental and brain abnormalities, and fetal serum cytokine levels. RESULTS: Prenatal TSHI + LPS caused acute and subacute placental injury hallmarked by inflammatory infiltrate, edema, hemorrhage and cell death along with placental increases in IL-1β and TNFα. TSHI + LPS increased a diverse array of circulating inflammatory proteins including IL-1β, TNFα, IL-6, IL-10, IL-4, IFNγ and CXCL1, both immediately after TSHI + LPS and in live born pups. CNS inflammation was characterized by increased CXCL1. DISCUSSION: Prenatal TSHI + LPS in rats induces placental injury and inflammation histologically consistent with chorioamnionitis, concomitant with elevated serum and CNS pro-inflammatory cytokines. This model accurately recapitulates key pathophysiological processes observed in extremely preterm infants including placental, fetal, and CNS inflammation. Further investigation into the mechanism of CNS injury following chorioamnionitis and the placental-brain axis will guide the use of future interventions

    Microstructural and microglial changes after repetitive mild traumatic brain injury in mice.

    No full text
    Traumatic brain injury (TBI) is a major public health issue, with recently increased awareness of the potential long-term sequelae of repetitive injury. Although TBI is common, objective diagnostic tools with sound neurobiological predictors of outcome are lacking. Indeed, such tools could help to identify those at risk for more severe outcomes after repetitive injury and improve understanding of biological underpinnings to provide important mechanistic insights. We tested the hypothesis that acute and subacute pathological injury, including the microgliosis that results from repeated mild closed head injury (rmCHI), is reflected in susceptibility-weighted magnetic resonance imaging and diffusion-tensor imaging microstructural abnormalities. Using a combination of high-resolution magnetic resonance imaging, stereology, and quantitative PCR, we studied the pathophysiology of male mice that sustained seven consecutive mild traumatic brain injuries over 9 days in acute (24 hr) and subacute (1 week) time periods. rmCHI induced focal cortical microhemorrhages and impaired axial diffusivity at 1 week postinjury. These microstructural abnormalities were associated with a significant increase in microglia. Notably, microgliosis was accompanied by a change in inflammatory microenvironment defined by robust spatiotemporal alterations in tumor necrosis factor-α receptor mRNA. Together these data contribute novel insight into the fundamental biological processes associated with repeated mild brain injury concomitant with subacute imaging abnormalities in a clinically relevant animal model of repeated mild TBI. These findings suggest new diagnostic techniques that can be used as biomarkers to guide the use of future protective or reparative interventions. © 2016 Wiley Periodicals, Inc

    The role of next generation sequencing in infection prevention in human parainfluenza virus 3 infections in immunocompromised patients.

    No full text
    BACKGROUND: Respiratory viral infections are a significant problem in patients with hematologic malignancies. We report a cluster of HPIV 3 infections in our myeloma patients, and describe the utility of next generation sequencing (NGS) to identify transmission linkages which can assist in infection prevention. OBJECTIVES: To evaluate the utility of NGS to track respiratory viral infection outbreaks and delineate between community acquired and nosocomial infections in our cancer units. STUDY DESIGN: Retrospective chart review conducted at a single site. All patients diagnosed with multiple myeloma who developed symptoms suggestive of upper respiratory tract infection (URTI) or lower respiratory tract infection (LRTI) along with a respiratory viral panel (RVP) test positive for HPIV 3 between April 1, 2016, to June 30, 2016, were included. Sequencing was performed on the Illumina MiSeqâ„¢. To gain understanding regarding community strains of HPIV 3 during the same season, we also performed NGS on HPIV3 strains isolated from pediatric cases. RESULTS: We saw a cluster of 13 cases of HPIV3 infections in the myeloma unit. Using standard epidemiologic criteria, 3 cases were considered community acquired, 7 cases developed infection during treatment in the cancer infusion center, while an additional 3 developed infections during hospital stay. Seven patients required hospitalization for a median duration of 20days. NGS enabled sensitive discrimination of the relatedness of the isolates obtained during the outbreak and provided evidence for source of transmission. Two hospital onset infections could be tracked to an index case; the genome sequences of HPIV 3 strains from these 3 patients only differed by a single nucleotide. CONCLUSIONS: NGS offers a significantly higher discriminatory value as an epidemiologic tool, and can be used to gather real-time information and identification of transmission linkages to assist in infection prevention in immunocompromised patients

    The role of next generation sequencing in infection prevention in human parainfluenza virus 3 infections in immunocompromised patients.

    No full text
    BACKGROUND: Respiratory viral infections are a significant problem in patients with hematologic malignancies. We report a cluster of HPIV 3 infections in our myeloma patients, and describe the utility of next generation sequencing (NGS) to identify transmission linkages which can assist in infection prevention. OBJECTIVES: To evaluate the utility of NGS to track respiratory viral infection outbreaks and delineate between community acquired and nosocomial infections in our cancer units. STUDY DESIGN: Retrospective chart review conducted at a single site. All patients diagnosed with multiple myeloma who developed symptoms suggestive of upper respiratory tract infection (URTI) or lower respiratory tract infection (LRTI) along with a respiratory viral panel (RVP) test positive for HPIV 3 between April 1, 2016, to June 30, 2016, were included. Sequencing was performed on the Illumina MiSeqâ„¢. To gain understanding regarding community strains of HPIV 3 during the same season, we also performed NGS on HPIV3 strains isolated from pediatric cases. RESULTS: We saw a cluster of 13 cases of HPIV3 infections in the myeloma unit. Using standard epidemiologic criteria, 3 cases were considered community acquired, 7 cases developed infection during treatment in the cancer infusion center, while an additional 3 developed infections during hospital stay. Seven patients required hospitalization for a median duration of 20days. NGS enabled sensitive discrimination of the relatedness of the isolates obtained during the outbreak and provided evidence for source of transmission. Two hospital onset infections could be tracked to an index case; the genome sequences of HPIV 3 strains from these 3 patients only differed by a single nucleotide. CONCLUSIONS: NGS offers a significantly higher discriminatory value as an epidemiologic tool, and can be used to gather real-time information and identification of transmission linkages to assist in infection prevention in immunocompromised patients

    Complete Genome Sequences of Four Novel Human Coronavirus OC43 Isolates Associated with Severe Acute Respiratory Infection.

    No full text
    We report here the complete genome sequences of four human coronavirus (HCoV) OC43 isolates generated using targeted viral nucleic acid capture and next-generation sequencing; the isolates were collected in New Mexico and Arkansas, USA, in February (HCoV-OC43/USA/TCNP_0070/2016) and March (HCoV-OC43/USA/ACRI_0052/2016) 2016 and January 2017 (HCoV-OC43/USA/TCNP_00204/2017 and HCoV-OC43/USA/TCNP_00212/2017)
    corecore