5,753 research outputs found

    Multivariate Design of Experiments for Engineering Dimensional Analysis

    Full text link
    We consider the design of dimensional analysis experiments when there is more than a single response. We first give a brief overview of dimensional analysis experiments and the dimensional analysis (DA) procedure. The validity of the DA method for univariate responses was established by the Buckingham Π\Pi-Theorem in the early 20th century. We extend the theorem to the multivariate case, develop basic criteria for multivariate design of DA and give guidelines for design construction. Finally, we illustrate the construction of designs for DA experiments for an example involving the design of a heat exchanger

    A guide to nestling development and aging in altricial passerines

    Get PDF
    Nestling growth and development studies have been a topic of interest for a greater part of the last century (Sutton 1935, Walkinshaw 1948) and continue to be of interest today. This is not surprising since studies on nestling growth can provide a wealth of biological information that has larger implications for avian management and conservation. Despite this history of studying nestling development, basic information is still limited or absent for many species. Many questions remain unanswered, and contradictory conclusions are often found in the literature (Starck and Ricklefs 1998a). Therefore, much information on aging and development can still be gained from studying the development patterns of similar species and from comparative studies, across avian orders (Minea et al. 1982, Saunders and Hansen 1989, Carsson and Hörnfeldt 1993). Additionally, nestling growth studies can yield insight into the effects of different nesting strategies on productivity (O’Connor 1978), as well as the impacts of parental effort and environmental variables on fitness (Ross 1980, Ricklefs and Peters 1981, Magrath 1991). Since low reproductive success may play a significant role in the declines of many North American passerines (Sherry and Holmes 1992, Ballard et al. 2003), a better understanding of the factors that influence reproductive success is a vital component of avian conservation (Martin 1992). Data on nestling aging can be used to improve nest survival estimates (Dinsmore 2002, Nur et al. 2004), providing information that can be used to more precisely age nests (Pinkowski 1975, Podlesack and Blem 2002), (Jones and Geupel 2007). Indeed, the relatively short time period young spend developing in the nest is a critical part of a bird’s life cycle and a nestling’s developmental path can affect its survival to independence, its survival as an adult, and its future reproductive success

    Agricultural Contribution of Nitrate-N to the Des Moines River: 1945 vs. 1980

    Get PDF
    Recently, intensive water quality monitoring has demonstrated the presence of nitrate (N03-N) in surface and groundwater throughout the Midwestern U.S. (Hallberg, 1989)

    Making heads or tails of phospholipids in mitochondria

    Get PDF
    Mitochondria are dynamic organelles whose functional integrity requires a coordinated supply of proteins and phospholipids. Defined functions of specific phospholipids, like the mitochondrial signature lipid cardiolipin, are emerging in diverse processes, ranging from protein biogenesis and energy production to membrane fusion and apoptosis. The accumulation of phospholipids within mitochondria depends on interorganellar lipid transport between the endoplasmic reticulum (ER) and mitochondria as well as intramitochondrial lipid trafficking. The discovery of proteins that regulate mitochondrial membrane lipid composition and of a multiprotein complex tethering ER to mitochondrial membranes has unveiled novel mechanisms of mitochondrial membrane biogenesis

    Short-term studies underestimate 30-generation changes in a butterfly metapopulation

    Get PDF
    Most studies of rare and endangered species are based on work carried out within one generation, or over one to a few generations of the study organism. We report the results of a study that spans 30 generations (years) of the entire natural range of a butterfly race that is endemic to 35 km2 of north Wales, UK. Short-term studies (surveys in single years and dynamics over 4 years) of this system led to the prediction that the regional distribution would be quite stable, and that colonization and extinction dynamics would be relatively unimportant. However, a longer-term study revealed unexpectedly high levels of population turnover (local extinction and colonization), affecting 18 out of the 20 patches that were occupied at any time during the period. Modelling the system (using the 'incidence function model' (IFM) for metapopulations) also showed higher levels of colonization and extinction with increasing duration of the study. The longer-term dynamics observed in this system can be compared, at a metapopulation level, with the increased levels of variation observed with increasing time that have been observed in single populations. Long-term changes may arise from local changes in the environment that make individual patches more or less suitable for the butterfly, or from unusual colonization or extinction events that take metapopulations into alternative states. One implication is that metapopulation and population viability analyses based on studies that cover only a few animal or plant generations may underestimate extinction threats

    Spatial Description and Analysis of Grasshopper Abundances in Colorado Rangeland

    Get PDF
    Although rangeland grasshopper populations have been studied for more than 120 years, little is known of the spatial patterns in grasshopper numbers between outbreak cycles. This information is necessary to understand how grasshopper outbreaks develop and to correctly design research, monitoring, and modeling projects. We used exploratory data analysis and geostatistics to identify the spatial patterns in grasshopper numbers for 1993 through 1997 in Colorado. The same family of models (spherical) provided the best fit to the sample data for all years, which implies that similar processes influenced grasshopper densities over these years. The parameters of the models differed among years, however, which suggest that the scale of spatial patterning changed over time. Since Colorado grasshopper densities were patterned at scales larger than those reported for other areas of the Great Plains, our results suggest that survey methods for Colorado are not adequate to identify small-scale “hot spots” of high grasshopper numbers, inhibiting prediction of potential outbreak foci in this region

    Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils

    Get PDF
    Soil carbon, a major component of the global carbon inventory, has significant potential for change with changing climate and human land use. We applied the Century ecosystem model to a series of forest and grassland sites distributed globally to examine large-scale controls over soil carbon. Key site-specific parameters influencing soil carbon dynamics are soil texture and foliar lignin content; accordingly, we perturbed these variables at each site to establish a range of carbon concentrations and turnover times. We examined the simulated soil carbon stores, turnover times, and C:N ratios for correlations with patterns of independent variables. Results showed that soil carbon is related linearly to soil texture, increasing as clay content increases, that soil carbon stores and turnover time are related to mean annual temperature by negative exponential functions, and that heterotrophic respiration originates from recent detritus (∼50%), microbial turnover (∼30%), and soil organic matter (∼20%) with modest variations between forest and grassland ecosystems. The effect of changing temperature on soil organic carbon (SOC) estimated by Century is dSOC/dT= 183e−0.034T. Global extrapolation of this relationship leads to an estimated sensitivity of soil C storage to a temperature of −11.1 Pg° C−1, excluding extreme arid and organic soils. In Century, net primary production (NPP) and soil carbon are closely coupled through the N cycle, so that as temperatures increase, accelerated N release first results in fertilization responses, increasing C inputs. The Century-predicted effect of temperature on carbon storage is modified by as much as 100% by the N cycle feedback. Century-estimated soil C sensitivity (−11.1 Pg° C−1) is similar to losses predicted with a simple data-based calculation (−14.1 Pg° C−1). Inclusion of the N cycle is important for even first-order predictions of terrestrial carbon balance. If the NPP-SOC feedback is disrupted by land use or other disturbances, then SOC sensitivity can greatly exceed that estimated in our simulations. Century results further suggest that if climate change results in drying of organic soils (peats), soil carbon loss rates can be high

    Three-dimensional Magnetic Restructuring in Two Homologous Solar Flares in the Seismically Active NOAA AR 11283

    Get PDF
    We carry out a comprehensive investigation comparing the three-dimensional magnetic field restructuring, flare energy release, and the helioseismic response, of two homologous flares, the 2011 September 6 X2.1 (FL1) and September 7 X1.8 (FL2) flares in NOAA AR 11283. In our analysis, (1) a twisted flux rope (FR) collapses onto the surface at a speed of 1.5 km/s after a partial eruption in FL1. The FR then gradually grows to reach a higher altitude and collapses again at 3 km/s after a fuller eruption in FL2. Also, FL2 shows a larger decrease of the flux-weighted centroid separation of opposite magnetic polarities and a greater change of the horizontal field on the surface. These imply a more violent coronal implosion with corresponding more intense surface signatures in FL2. (2) The FR is inclined northward, and together with the ambient fields, it undergoes a southward turning after both events. This agrees with the asymmetric decay of the penumbra observed in the peripheral regions. (3) The amounts of free magnetic energy and nonthermal electron energy released during FL1 are comparable to those of FL2 within the uncertainties of the measurements. (4) No sunquake was detected in FL1; in contrast, FL2 produced two seismic emission sources S1 and S2 both lying in the penumbral regions. Interestingly, S1 and S2 are connected by magnetic loops, and the stronger source S2 has weaker vertical magnetic field. We discuss these results in relation to the implosion process in the low corona and the sunquake generation.Comment: 12 pages, 9 figures, accepted to the Astrophysical Journa
    corecore