17 research outputs found

    The Mechanism Underlying Transient Weakness in Myotonia Congenita

    Get PDF
    In addition to the hallmark muscle stiffness, patients with recessive myotonia congenita (Becker disease) experience debilitating bouts of transient weakness that remain poorly understood despite years of study. We performed intracellular recordings from muscle of both genetic and pharmacologic mouse models of Becker disease to identify the mechanism underlying transient weakness. Our recordings reveal transient depolarizations (plateau potentials) of the membrane potential to -25 to -35 mV in the genetic and pharmacologic models of Becker disease. Both Na + and Ca 2+ currents contribute to plateau potentials. Na + persistent inward current (NaPIC) through Na V 1.4 channels is the key trigger of plateau potentials and current through Ca V 1.1 Ca 2+ channels contributes to the duration of the plateau. Inhibiting NaPIC with ranolazine prevents the development of plateau potentials and eliminates transient weakness in vivo. These data suggest that targeting NaPIC may be an effective treatment to prevent transient weakness in myotonia congenita

    A Proposed Taxonomy of Anaerobic Fungi (Class Neocallimastigomycetes) Suitable for Large-Scale Sequence-Based Community Structure Analysis

    Get PDF
    Anaerobic fungi are key players in the breakdown of fibrous plant material in the rumen, but not much is known about the composition and stability of fungal communities in ruminants. We analyzed anaerobic fungi in 53 rumen samples from farmed sheep (4 different flocks), cattle, and deer feeding on a variety of diets. Denaturing gradient gel electrophoresis fingerprinting of the internal transcribed spacer 1 (ITS1) region of the rrn operon revealed a high diversity of anaerobic fungal phylotypes across all samples. Clone libraries of the ITS1 region were constructed from DNA from 11 rumen samples that had distinctly different fungal communities. A total of 417 new sequences were generated to expand the number and diversity of ITS1 sequences available. Major phylogenetic groups of anaerobic fungi in New Zealand ruminants belonged to the genera Piromyces, Neocallimastix, Caecomyces and Orpinomyces. In addition, sequences forming four novel clades were obtained, which may represent so far undetected genera or species of anaerobic fungi. We propose a revised phylogeny and pragmatic taxonomy for anaerobic fungi, which was tested and proved suitable for analysis of datasets stemming from high-throughput next-generation sequencing methods. Comparing our revised taxonomy to the taxonomic assignment of sequences deposited in the GenBank database, we believe that >29% of ITS1 sequences derived from anaerobic fungal isolates or clones are misnamed at the genus level

    Long-term climate change commitment and reversibility: an EMIC intercomparison

    Get PDF
    This paper summarizes the results of an intercomparison project with Earth System Models of Intermediate Complexity (EMICs) undertaken in support of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). The focus is on long-term climate projections designed to: (i) quantify the climate change commitment of different radiative forcing trajectories, and (ii) explore the extent to which climate change is reversible on human timescales. All commitment simulations follow the four Representative Concentration Pathways (RCPs) and their extensions to 2300. Most EMICs simulate substantial surface air temperature and thermosteric sea level rise commitment following stabilization of the atmospheric composition at year-2300 levels. The meridional overturning circulation (MOC) is weakened temporarily and recovers to near pre-industrial values in most models for RCPs 2.6–6.0. The MOC weakening is more persistent for RCP 8.5. Elimination of anthropogenic CO2 emissions after 2300 results in slowly decreasing atmospheric CO2 concentrations. At year 3000 atmospheric CO2 is still at more than half its year-2300 level in all EMICs for RCPs 4.5–8.5. Surface air temperature remains constant or decreases slightly and thermosteric sea level rise continues for centuries after elimination of CO2 emissions in all EMICs. Restoration of atmospheric CO2 from RCP to pre-industrial levels over 100–1000 years requires large artificial removal of CO2 from the atmosphere and does not result in the simultaneous return to pre-industrial climate conditions, as surface air temperature and sea level response exhibit a substantial time lag relative to atmospheric CO2

    Periodic activity from a fast radio burst source

    Full text link
    Fast radio bursts (FRBs) are bright, millisecond-duration radio transients originating from extragalactic distances. Their origin is unknown. Some FRB sources emit repeat bursts, ruling out cataclysmic origins for those events. Despite searches for periodicity in repeat burst arrival times on time scales from milliseconds to many days, these bursts have hitherto been observed to appear sporadically, and though clustered, without a regular pattern. Here we report the detection of a 16.35±0.1516.35\pm0.15 day periodicity (or possibly a higher-frequency alias of that periodicity) from a repeating FRB 180916.J0158+65 detected by the Canadian Hydrogen Intensity Mapping Experiment Fast Radio Burst Project (CHIME/FRB). In 38 bursts recorded from September 16th, 2018 through February 4th, 2020, we find that all bursts arrive in a 5-day phase window, and 50% of the bursts arrive in a 0.6-day phase window. Our results suggest a mechanism for periodic modulation either of the burst emission itself, or through external amplification or absorption, and disfavour models invoking purely sporadic processes

    Periodic Paralysis : Pursuing a Protocol

    No full text
    Hypokalemic Periodic Paralysis is an autosomal dominant disease of skeletal muscle in which patients experience episodes of weakness. There is currently no highly effective therapy. A mouse model has been created to study the disease to better understand the physiological changes leading to weakness and to develop novel treatments. However, the work done with the mouse model has used ever-changing protocols and the data produced have been insufficient to answer key questions and bring treatments closer to clinical trials. I evaluated factors of temperature, insulin, potassium concentrations, and length of protocol or exercise, to develop a protocol that reproducibly triggers weakness. I was able to successfully create a protocol that consistently produces paralysis (35°C, insulin, 4.75 to 1 mM K+, long protocol or exercise) to study the underlying pathophysiology and to evaluate novel therapy

    Treatment of Myotonia Congenita With Retigabine in Mice

    No full text
    Patients with myotonia congenita suffer from muscle stiffness caused by muscle hyperexcitability. Although loss-of-function mutations in the ClC-1 muscle chloride channel have been known for 25 years to cause myotonia congenita, this discovery has led to little progress on development of therapy. Currently, treatment is primarily focused on reducing hyperexcitability by blocking Na+ current. However, other approaches such as increasing K+ currents might also be effective. For example, the K+ channel activator retigabine, which opens KCNQ channels, is effective in treating epilepsy because it causes hyperpolarization of the resting membrane potential in neurons. In this study, we found that retigabine greatly reduced the duration of myotonia in vitro. Detailed study of its mechanism of action revealed that retigabine had no effect on any of the traditional measures of muscle excitability such as resting potential, input resistance or the properties of single action potentials. Instead it appears to shorten myotonia by activating K+ current during trains of action potentials. Retigabine also greatly reduced the severity of myotonia in vivo, which was measured using a muscle force transducer. Despite its efficacy in vivo, retigabine did not improve motor performance of mice with myotonia congenita. There are a number of potential explanations for the lack of motor improvement in vivo including central nervous system side effects. Nonetheless, the striking effectiveness of retigabine on muscle itself suggests that activating potassium currents is an effective method to treat disorders of muscle hyperexcitability

    Treatment of Myotonia Congenita With Retigabine in Mice

    No full text
    Patients with myotonia congenita suffer from muscle stiffness caused by muscle hyperexcitability. Although loss-of-function mutations in the ClC-1 muscle chloride channel have been known for 25 years to cause myotonia congenita, this discovery has led to little progress on development of therapy. Currently, treatment is primarily focused on reducing hyperexcitability by blocking Na + current. However, other approaches such as increasing K + currents might also be effective. For example, the K + channel activator retigabine, which opens KCNQ channels, is effective in treating epilepsy because it causes hyperpolarization of the resting membrane potential in neurons. In this study, we found that retigabine greatly reduced the duration of myotonia in vitro. Detailed study of its mechanism of action revealed that retigabine had no effect on any of the traditional measures of muscle excitability such as resting potential, input resistance or the properties of single action potentials. Instead it appears to shorten myotonia by activating K + current during trains of action potentials. Retigabine also greatly reduced the severity of myotonia in vivo, which was measured using a muscle force transducer. Despite its efficacy in vivo, retigabine did not improve motor performance of mice with myotonia congenita. There are a number of potential explanations for the lack of motor improvement in vivo including central nervous system side effects. Nonetheless, the striking effectiveness of retigabine on muscle itself suggests that activating potassium currents is an effective method to treat disorders of muscle hyperexcitability

    Treatment of Myotonia Congenita With Retigabine in Mice

    No full text
    Patients with myotonia congenita suffer from muscle stiffness caused by muscle hyperexcitability. Although loss-of-function mutations in the ClC-1 muscle chloride channel have been known for 25 years to cause myotonia congenita, this discovery has led to little progress on development of therapy. Currently, treatment is primarily focused on reducing hyperexcitability by blocking Na+ current. However, other approaches such as increasing K+ currents might also be effective. For example, the K+ channel activator retigabine, which opens KCNQ channels, is effective in treating epilepsy because it causes hyperpolarization of the resting membrane potential in neurons. In this study, we found that retigabine greatly reduced the duration of myotonia in vitro. Detailed study of its mechanism of action revealed that retigabine had no effect on any of the traditional measures of muscle excitability such as resting potential, input resistance or the properties of single action potentials. Instead it appears to shorten myotonia by activating K+ current during trains of action potentials. Retigabine also greatly reduced the severity of myotonia in vivo, which was measured using a muscle force transducer. Despite its efficacy in vivo, retigabine did not improve motor performance of mice with myotonia congenita. There are a number of potential explanations for the lack of motor improvement in vivo including central nervous system side effects. Nonetheless, the striking effectiveness of retigabine on muscle itself suggests that activating potassium currents is an effective method to treat disorders of muscle hyperexcitability
    corecore