53 research outputs found

    Coulomb dissociation of O-16 into He-4 and C-12

    Get PDF
    We measured the Coulomb dissociation of O-16 into He-4 and C-12 within the FAIR Phase-0 program at GSI Helmholtzzentrum fur Schwerionenforschung Darmstadt, Germany. From this we will extract the photon dissociation cross section O-16(alpha,gamma)C-12, which is the time reversed reaction to C-12(alpha,gamma)O-16. With this indirect method, we aim to improve on the accuracy of the experimental data at lower energies than measured so far. The expected low cross section for the Coulomb dissociation reaction and close magnetic rigidity of beam and fragments demand a high precision measurement. Hence, new detector systems were built and radical changes to the (RB)-B-3 setup were necessary to cope with the high-intensity O-16 beam. All tracking detectors were designed to let the unreacted O-16 ions pass, while detecting the C-12 and He-4

    First Results of the 140^{140}Ce(n,γ)141^{141}Ce Cross-Section Measurement at n_TOF

    Get PDF
    An accurate measurement of the 140^{140}Ce(n,γ) energy-dependent cross-section was performed at the n_TOF facility at CERN. This cross-section is of great importance because it represents a bottleneck for the s-process nucleosynthesis and determines to a large extent the cerium abundance in stars. The measurement was motivated by the significant difference between the cerium abundance measured in globular clusters and the value predicted by theoretical stellar models. This discrepancy can be ascribed to an overestimation of the 140^{140}Ce capture cross-section due to a lack of accurate nuclear data. For this measurement, we used a sample of cerium oxide enriched in 140^{140}Ce to 99.4%. The experimental apparatus consisted of four deuterated benzene liquid scintillator detectors, which allowed us to overcome the difficulties present in the previous measurements, thanks to their very low neutron sensitivity. The accurate analysis of the p-wave resonances and the calculation of their average parameters are fundamental to improve the evaluation of the 140^{140}Ce Maxwellian-averaged cross-section

    First Results of the 140^{140}Ce(n,γ)141^{141}Ce Cross-Section Measurement at n_TOF

    Get PDF
    An accurate measurement of the 140^{140}Ce(n,γ) energy-dependent cross-section was performed at the n_TOF facility at CERN. This cross-section is of great importance because it represents a bottleneck for the s-process nucleosynthesis and determines to a large extent the cerium abundance in stars. The measurement was motivated by the significant difference between the cerium abundance measured in globular clusters and the value predicted by theoretical stellar models. This discrepancy can be ascribed to an overestimation of the 140^{140}Ce capture cross-section due to a lack of accurate nuclear data. For this measurement, we used a sample of cerium oxide enriched in 140^{140}Ce to 99.4%. The experimental apparatus consisted of four deuterated benzene liquid scintillator detectors, which allowed us to overcome the difficulties present in the previous measurements, thanks to their very low neutron sensitivity. The accurate analysis of the p-wave resonances and the calculation of their average parameters are fundamental to improve the evaluation of the 140^{140}Ce Maxwellian-averaged cross-section

    Coulomb dissociation of 16O into 4He and 12C

    Get PDF
    We measured the Coulomb dissociation of 16O into 4He and 12C at the R3B setup in a first campaign within FAIR Phase 0 at GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt. The goal was to improve the accuracy of the experimental data for the 12C(a,?)16O fusion reaction and to reach lower center-ofmass energies than measured so far. The experiment required beam intensities of 109 16O ions per second at an energy of 500 MeV/nucleon. The rare case of Coulomb breakup into 12C and 4He posed another challenge: The magnetic rigidities of the particles are so close because of the same mass-To-charge-number ratio A/Z = 2 for 16O, 12C and 4He. Hence, radical changes of the R3B setup were necessary. All detectors had slits to allow the passage of the unreacted 16O ions, while 4He and 12C would hit the detectors' active areas depending on the scattering angle and their relative energies. We developed and built detectors based on organic scintillators to track and identify the reaction products with sufficient precision

    Measurement of the 244^{244}Cm and 246^{246}Cm Neutron-Induced Cross Sections at the n_TOF Facility

    Get PDF
    The neutron capture reactions of the 244^{244}Cm and 246^{246}Cm isotopes open the path for the formation of heavier Cm isotopes and of heavier elements such as Bk and Cf in a nuclear reactor. In addition, both isotopes belong to the minor actinides with a large contribution to the decay heat and to the neutron emission in irradiated fuels proposed for the transmutation of nuclear waste and fast critical reactors. The available experimental data for both isotopes are very scarce. We measured the neutron capture cross section with isotopically enriched samples of 244^{244}Cm and 246^{246}Cm provided by JAEA. The measurement covers the range from 1 eV to 250 eV in the n_TOF Experimental Area 2 (EAR-2). In addition, a normalization measurement with the 244^{244}Cm sample was performed at Experimental Area 1 (EAR-1) with the Total Absorption Calorimeter (TAC)

    Neutron capture on gallium in the astrophysical s process using time of flight

    No full text
    The stellar nucleosynthesis of elements heavier than iron can primarily be attributed to neutron capture reactions in the s and r process. While the s process is considered to be well understood with regards to the stellar sites, phases and conditions where it occurs, nucleosynthesis networks still need accurate neutron capture cross sections with low uncertainties as input parameters. Their quantitative outputs for the isotopic abundances produced in the s process, coupled with the observable solar abundances, can be used to indirectly infer the expected r process abundances. The two stable gallium isotopes, 69Ga and 71Ga, have been shown in sensitivity studies to have considerable impact on the weak s process in massive stars. The available experimental data, mostly derived from neutron activation measurements for quasi-stellar neutron spectra at kBT = 25 keV, show disagreements up to a factor of three. Determining the differential neutron capture cross section can provide input data for the whole range of astrophysically relevant energies. To that end, a neutron time of flight experimental campaign at the n_TOF facility at CERN was performed for three months, using isotopically enriched samples of both isotopes. The data taken at the EAR1 experimental area covered a wide neutron energy range from thermal to several hundred keV. The respective differential and spectrum averaged neutron capture cross sections for 69Ga and 71Ga were determined in this thesis. They show good agreement with the evaluated cross sections for 71Ga, but reproduce the deviations from the evaluated data that other, more recent activation measurements showed for 69Ga.Die Nukleosynthese der meisten Elemente schwerer als Eisen in Sternen erfolgt durch Neutroneneinfangreaktionen im s- und r-Prozess. Während der s-Prozess bezüglich der stellaren Szenarien, Brennphasen und Bedingungen, unter welchen er vorkommt, als gut verstanden gilt, erfordern Nukleosynthese Netzwerkrechnungen genaue Neutroneneinfangwirkungsquerschnitte als Eingabeparameter. Ihre quantitativen Ergebnisse der s-Prozess Isotopenhäufigkeiten, kombiniert mit den beobachtbaren solaren Isotopenhäufigkeiten, können genutzt werden, um die zu erwartenden r-Prozess-Häufigkeiten zu bestimmen. Sensitivitätsstudien des schwachen s-Prozess in massiven Sternen haben gezeigt, dass die zwei stabilen Gallium Isotope, 69Ga und 71Ga, einen beachtlichen Einfluss auf diesen haben. Die verfügbare experimentelle Datenlage stammt primär aus Aktivierungsmessungen für quasi-stellare Neutronenspektren bei kBT = 25 keV, und weist Unterschiede bis zu einem Faktor drei zueinander auf. Die Bestimmung der differenziellen Neutroneneinfangwirkungsquerschnitte ermöglicht es, Eingabeparameter für den kompletten Bereich astrophysikalisch relevanter Energien zu generieren. Zu diesem Zweck wurde am n_TOF Experiment am CERN eine Flugzeitmessung über drei Monate hinweg durchgeführt. Die gemessenen Daten erstrecken sich über einen Neutronenenergiebereich von thermischen Energien bis zu mehreren hundert keV. Die differenziellen und über die jeweiligen stellaren Neutronenspektren gemittelten Wirkungsquerschnitte von 69Ga und 71Ga wurden in dieser Arbeit bestimmt. Sie zeigen gute Übereinstimmung mit den evaluierten Wirkungsquerschnitten für 71Ga, reproduzieren aber die in kürzlich durchgeführten Aktivierungsmessungen gefundenen Abweichungen von den evaluierten Daten für 69Ga

    Reactor activations to constrain astrophysically relevant cross sections

    No full text
    The determination of astrophysically relevant neutron-induced cross sections is particularly difficult when the involved isotopes are radioactive or the cross sections are very small. Activation experiments at reactors offer the possibility to overcome these limitations with high neutron fluxes. The flux determination is typically based on the activation of two monitors with known cross sections to separate the different flux components. The usually applied cadmium difference method allows a distinction between the thermal and the epithermal part. By a combination of two linear functions representing both monitors the neutron flux components can be determined. However, if more than two monitors are used, the linear system of equations is overdetermined, which allows the identification of a probability distribution. In this proceeding, the feasibility and relevance of this method is demonstrated

    Gamma intensities for the β-decay of 97Zr

    No full text
    To determine the neutron flux in activation experiments, a commonly used monitor is zirconium and in particular the stable isotopes 94,96Zr. 96Zr is very sensitive to epithermal neutrons. Despite its widespread application, most gamma intensities of the radioactive neutron capture product, 97Zr, yield large uncertainties. With the help of a new γ spectroscopy setup and GEANT simulations, we succeeded in determining a new set of γ-ray intensities with significantly reduced uncertainties
    corecore