331 research outputs found

    Development of Fluorinated Analogues of Perhexiline with Improved Pharmacokinetic Properties and Retained Efficacy

    Get PDF
    We designed and synthesized perhexiline analogues that have the same therapeutic profile as the parent cardiovascular drug but lacking its metabolic liability associated with CYP2D6 metabolism. Cycloalkyl perhexiline analogues 6a–j were found to be unsuitable for further development, as they retained a pharmacokinetic profile very similar to that shown by the parent compound. Multistep synthesis of perhexiline analogues incorporating fluorine atoms onto the cyclohexyl ring(s) provided a range of different fluoroperhexiline analogues. Of these, analogues 50 (4,4-gem-difluoro) and 62 (4,4,4′,4′-tetrafluoro) were highly stable and showed greatly reduced susceptibility to CYP2D6-mediated metabolism. In vitro efficacy studies demonstrated that a number of derivatives retained acceptable potency against CPT-1. Having the best balance of properties, 50 was selected for further evaluation. Like perhexiline, it was shown to be selectively concentrated in the myocardium and, using the Langendorff model, to be effective in improving both cardiac contractility and relaxation when challenged with high fat buffer

    Evaluating potential biomarkers of cachexia and survival in skeletal muscle of upper gastrointestinal cancer patients

    Get PDF
    Background  In order to grow the potential therapeutic armamentarium in the cachexia domain of supportive oncology, there is a pressing need to develop suitable biomarkers and potential drug targets. This pilot study evaluated several potential candidate biomarkers in skeletal muscle biopsies from a cohort of upper gastrointestinal cancer (UGIC) patients.  Methods  One hundred seven patients (15 weight-stable healthy controls (HC) and 92 UGIC patients) were recruited. Mean (standard deviation) weight-loss of UGIC patients was 8.1 (9.3\%). Cachexia was defined as weight-loss ≥5\%. Rectus abdominis muscle was obtained at surgery and was analysed by western blotting or quantitative real-time–polymerase chain reaction. Candidate markers were selected according to previous literature and included Akt and phosphorylated Akt (pAkt, n = 52), forkhead box O transcription factors (n = 59), ubiquitin E3 ligases (n = 59, control of muscle anabolism/catabolism), BNIP3 and GABARAPL1 (n = 59, as markers of autophagy), myosin heavy-chain (MyHC, n = 54), dystrophin (n = 39), β-dystroglycan (n = 52), and β-sarcoglycan (n = 52, as markers of structural alteration in a muscle). Patients were followed up for an average of 1255 days (range 581–1955 days) or until death. Patients were grouped accordingly and analysed by (i) all cancer patients vs. HC; (ii) cachectic vs. non-cachectic cancer patients; and (iii) cancer patients surviving ≤1 vs. {\textgreater}1 year post operatively.  Results  Cancer compared with HC patients had reduced mean (standard deviation) total Akt protein [0.49 (0.31) vs. 0.89 (0.17), P = 0.001], increased ratio of phosphorylated to total Akt [1.33 (1.04) vs. 0.32 (0.21), P = 0.002] and increased expression of GABARAPL1 [1.60 (0.76) vs. 1.10 (0.57), P = 0.024]. β-Dystroglycan levels were higher in cachectic compared with non-cachectic cancer patients [1.01 (0.16) vs. 0.87 (0.20), P = 0.007]. Survival was shortened in patients with low compared with high MyHC levels (median 316 vs. 1326 days, P = 0.023) and dystrophin levels (median 341 vs. 660 days, P = 0.008).  Conclusions  The present study has identified intramuscular protein level of β-dystroglycan as a potential biomarker of cancer cachexia. Changes in the structural elements of muscle (MyHC or dystrophin) appear to be survival biomarkers

    The Evolution of Ga and as Core Levels in the Formation of Fe/GaAs (001): A High Resolution Soft X-Ray Photoelectron Spectroscopic Study

    Get PDF
    A high resolution soft x-ray photoelectron spectroscopic study of Ga and as 3d core levels has been conducted for Fe/GaAs (001) as a function of Fe thickness. This work has provided unambiguous evidence of substrate disrupting chemical reactions induced by the Fe overlayer—a quantitative analysis of the acquired spectra indicates significantly differing behavior of Ga and as during Fe growth, and our observations have been compared with existing theoretical models. Our results demonstrate that the outdiffusing Ga and as remain largely confined to the interface region, forming a thin intermixed layer. Whereas at low coverages Fe has little influence on the underlying GaAs substrate, the onset of substrate disruption when the Fe thickness reaches 3.5 Å results in major changes in the energy distribution curves (EDCs) of both as and Ga 3d cores. Our quantitative analysis suggests the presence of two additional as environments of metallic character: one bound to the interfacial region and another which, as confirmed by in situ oxidation experiments, surface segregates and persists over a wide range of overlayer thickness. Analysis of the corresponding Ga 3d EDCs found not two, but three additional environments—also metallic in nature. Two of the three are interface resident whereas the third undergoes outdiffusion at low Fe coverages. Based on the variations of the integrated intensities of each component, we present a schematic of the proposed chemical makeup of the Fe/GaAs (001) system

    The reliability and heritability of cortical folds and their genetic correlations across hemispheres

    Get PDF
    Cortical folds help drive the parcellation of the human cortex into functionally specific regions. Variations in the length, depth, width, and surface area of these sulcal landmarks have been associated with disease, and may be genetically mediated. Before estimating the heritability of sulcal variation, the extent to which these metrics can be reliably extracted from in-vivo MRI must be established. Using four independent test-retest datasets, we found high reliability across the brain (intraclass correlation interquartile range: 0.65-0.85). Heritability estimates were derived for three family-based cohorts using variance components analysis and pooled (total N > 3000); the overall sulcal heritability pattern was correlated to that derived for a large population cohort (N > 9000) calculated using genomic complex trait analysis. Overall, sulcal width was the most heritable metric, and earlier forming sulci showed higher heritability. The inter-hemispheric genetic correlations were high, yet select sulci showed incomplete pleiotropy, suggesting hemisphere-specific genetic influences

    Human dispersal and plant processing in the Pacific 55,000–50,000 years ago

    Get PDF
    The nature of Homo sapiens dispersals into the Pacific remains intensely debated. We present archaeological investigations in the Raja Ampat Islands, northwest of New Guinea, that provide the earliest evidence for humans arriving in the Pacific >55–50,000 years ago. The results demonstrate a northern equatorial route into New Guinea was a viable dispersal corridor to Sahul, alongside a southerly route to Australia. The evidence also indicates that early people visited tropical forests to process tree resins and hunt small animals suggesting that both rainforest and marine resources, rather than a purely maritime specialisation, was important for Pacific peoples’ adaptive success

    Prion protein interaction with soil humic substances: environmental implications

    Get PDF
    Transmissible spongiform encephalopathies (TSE) are fatal neurodegenerative disorders caused by prions. Animal TSE include scrapie in sheep and goats, and chronic wasting disease (CWD) in cervids. Effective management of scrapie in many parts of the world, and of CWD in North American deer population is complicated by the persistence of prions in the environment. After shedding from diseased animals, prions persist in soil, withstanding biotic and abiotic degradation. As soil is a complex, multi-component system of both mineral and organic components, it is important to understand which soil compounds may interact with prions and thus contribute to disease transmission. Several studies have investigated the role of different soil minerals in prion adsorption and infectivity; we focused our attention on the interaction of soil organic components, the humic substances (HS), with recombinant prion protein (recPrP) material. We evaluated the kinetics of recPrP adsorption, providing a structural and biochemical characterization of chemical adducts using different experimental approaches. Here we show that HS act as potent anti-prion agents in prion infected neuronal cells and in the amyloid seeding assays: HS adsorb both recPrP and prions, thus sequestering them from the prion replication process. We interpreted our findings as highly relevant from an environmental point of view, as the adsorption of prions in HS may affect their availability and consequently hinder the environmental transmission of prion diseases in ruminants

    Movement of the inner retina complex during the development of primary full-thickness macular holes: implications for hypotheses of pathogenesis

    Get PDF
    Background: The inner retinal complex is a well-defined layer in spectral-domain OCT scans of the retina. The central edge of this layer at the fovea provides anatomical landmarks that can be observed in serial OCT scans of developing full-thickness macular holes (FTMH). Measurement of the movement of these points may clarify the mechanism of FTMH formation. Method: This is a retrospective study of primary FTMH that had a sequence of two OCT scans showing progression of the hole. Measurements were made of the dimensions of the hole, including measurements using the central edge of the inner retinal complex (CEIRC) as markers. The inner retinal separation (distance between the CEIRC across the centre of the fovea) and the Height-IRS (average height of CEIRC above the retinal pigment epithelium) were measured. Results: Eighteen cases were identified in 17 patients. The average increase in the base diameter (368 microns) and the average increase in minimum linear dimension (187 microns) were much larger than the average increase in the inner retinal separation (73 microns). The average increase in Height-IRS was 103 microns. Conclusion: The tangential separation of the outer retina to produce the macular hole is much larger than the tangential separation of the inner retinal layers. A model based on the histology of the Muller cells at the fovea is proposed to explain the findings of this study

    Sarcopenia: etiology, clinical consequences, intervention, and assessment

    Get PDF
    The aging process is associated with loss of muscle mass and strength and decline in physical functioning. The term sarcopenia is primarily defined as low level of muscle mass resulting from age-related muscle loss, but its definition is often broadened to include the underlying cellular processes involved in skeletal muscle loss as well as their clinical manifestations. The underlying cellular changes involve weakening of factors promoting muscle anabolism and increased expression of inflammatory factors and other agents which contribute to skeletal muscle catabolism. At the cellular level, these molecular processes are manifested in a loss of muscle fiber cross-sectional area, loss of innervation, and adaptive changes in the proportions of slow and fast motor units in muscle tissue. Ultimately, these alterations translate to bulk changes in muscle mass, strength, and function which lead to reduced physical performance, disability, increased risk of fall-related injury, and, often, frailty. In this review, we summarize current understanding of the mechanisms underlying sarcopenia and age-related changes in muscle tissue morphology and function. We also discuss the resulting long-term outcomes in terms of loss of function, which causes increased risk of musculoskeletal injuries and other morbidities, leading to frailty and loss of independence

    Novel genetic loci underlying human intracranial volume identified through genome-wide association

    Get PDF
    Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438 adults, we discovered five novel loci for intracranial volume and confirmed two known signals. Four of the loci are also associated with adult human stature, but these remained associated with intracranial volume after adjusting for height. We found a high genetic correlation with child head circumference (ρgenetic=0.748), which indicated a similar genetic background and allowed for the identification of four additional loci through meta-analysis (Ncombined = 37,345). Variants for intracranial volume were also related to childhood and adult cognitive function, Parkinson’s disease, and enriched near genes involved in growth pathways including PI3K–AKT signaling. These findings identify biological underpinnings of intracranial volume and provide genetic support for theories on brain reserve and brain overgrowth
    corecore