105 research outputs found
Evolution of Alu Subfamily Structure in the Saimiri Lineage of New World Monkeys
Squirrelmonkeys,Saimiri,arecommonlyfoundinzoologicalparksandusedinbiomedicalresearch.S.boliviensisisthemostcommon species for research; however, there is little information about genome evolution within this primate lineage. Here, we reconstruct the Alu element sequence amplification and evolution in the genus Saimiri at the time of divergence within the family Cebidae lineage. Alu elements are the most successful SINE (Short Interspersed Element) in primates. Here, we report 46 Saimiri lineage specificAlusubfamilies.RetrotranspositionactivityinvolvedsubfamiliesrelatedtoAluS,AluTa10,andAluTa15.Manysubfamiliesare simultaneously active within the Saimiri lineage, a finding which supports the stealth model of Alu amplification. We also report a high resolution analysis of Alu subfamilies within the S. boliviensis genome [saiBol1]
Plasma lipocalin-2/NGAL is stable over 12 weeks and is not modulated by exercise or dieting
Amongst other immune cells, neutrophils play a key role in systemic inflammation leading to cardiovascular disease and can release inflammatory factors, including lipocalin-2 (LCN2). LCN2 drives cardiac hypertrophy and plays a role in maladaptive remodelling of the heart and has been associated with renal injury. While lifestyle factors such as diet and exercise are known to attenuate low-grade inflammation, their ability to modulate plasma LCN2 levels is unknown. Forty-eight endurance athletes and 52 controls (18–55 years) underwent measurement for various cardiovascular health indicators, along with plasma LCN2 concentration. No significant difference in LCN2 concentration was seen between the two groups. LCN2 was a very weak predictor or absent from models describing blood pressures or predicting athlete status. In another cohort, 57 non-diabetic overweight or obese men and post-menopausal women who fulfilled Adult Treatment Panel III metabolic syndrome criteria were randomly allocated into either a control, modified Dietary Approaches to Stop Hypertension (DASH) diet, or DASH and exercise group. Pre- and post-intervention demographic, cardiovascular health indicators, and plasma LCN2 expression were measured in each individual. While BMI fell in intervention groups, LCN2 levels remained unchanged within and between all groups, as illustrated by strong correlations between LCN2 concentrations pre- and 12 weeks post-intervention (r = 0.743, P < 0.0001). This suggests that circulating LCN2 expression are stable over a period of at least 12 weeks and is not modifiable by diet and exercise
Upper tibial MRI vascular marks lost in early knee osteoarthritis
Background: We describe upper tibial radiating vascular marks on MRI scans. They are lost in early osteoarthritis (OA).
Methods: A literature search revealed no previous description of upper tibial MRI radial vascular marks. Fifty-six consecutive patients with anteroposterior knee X-rays and an axial PD_SPAIR MRI scan of the same knee within 1 year were studied. Their mean age was 53.1 years (range 22–85) with 27 males and 29 females. The medial and lateral compartments of each knee were scored for osteoarthritis using the Kellgren-Lawrence (K-L) classification. Marks on the MRI scans were counted by layer and quadrant position.
Results: Radial vascular marks were present in the first axial upper tibial subchondral slice, peaked between 6 and 10 mm depth and were absent by 16 mm depth. There was no association with age, left or right knee, BMI, or weight. There was more K-L graded OA medially and more vascular marks laterally. There was an inverse correlation between the number of marks and early grades of osteoarthritis medially (p < 0.001) and laterally (p < 0.002).
Conclusion: We demonstrate previously undescribed subchondral vascular marks on axial MRI scans of the tibia and their inverse correlation with the presence and severity of early knee osteoarthritis. Our work offers a new insight into the possible vascular aetiology of osteoarthritis and potentially a means of earlier diagnosis and a therapeutic target
Ultra-high accuracy optical testing: creating diffraction-limitedshort-wavelength optical systems
Since 1993, research in the fabrication of extreme ultraviolet (EUV) optical imaging systems, conducted at Lawrence Berkeley National Laboratory (LBNL) and Lawrence Livermore National Laboratory (LLNL), has produced the highest resolution optical systems ever made. We have pioneered the development of ultra-high-accuracy optical testing and alignment methods, working at extreme ultraviolet wavelengths, and pushing wavefront-measuring interferometry into the 2-20-nm wavelength range (60-600 eV). These coherent measurement techniques, including lateral shearing interferometry and phase-shifting point-diffraction interferometry (PS/PDI) have achieved RMS wavefront measurement accuracies of 0.5-1-{angstrom} and better for primary aberration terms, enabling the creation of diffraction-limited EUV optics. The measurement accuracy is established using careful null-testing procedures, and has been verified repeatedly through high-resolution imaging. We believe these methods are broadly applicable to the advancement of short-wavelength optical systems including space telescopes, microscope objectives, projection lenses, synchrotron beamline optics, diffractive and holographic optics, and more. Measurements have been performed on a tunable undulator beamline at LBNL's Advanced Light Source (ALS), optimized for high coherent flux; although many of these techniques should be adaptable to alternative ultraviolet, EUV, and soft x-ray light sources. To date, we have measured nine prototype all-reflective EUV optical systems with NA values between 0.08 and 0.30 (f/6.25 to f/1.67). These projection-imaging lenses were created for the semiconductor industry's advanced research in EUV photolithography, a technology slated for introduction in 2009-13. This paper reviews the methods used and our program's accomplishments to date
Recommended from our members
Vitamin D insufficiency in COVID-19 and influenza A, and critical illness survivors: a cross-sectional study
Objectives: The steroid hormone vitamin D has roles in immunomodulation and bone health. Insufficiency is associated with susceptibility to respiratory infections. We report 25-hydroxy vitamin D (25(OH)D) measurements in hospitalised people with COVID-19 and influenza A and in survivors of critical illness to test the hypotheses that vitamin D insufficiency scales with illness severity and persists in survivors. Design: Cross-sectional study. Setting and participants: Plasma was obtained from 295 hospitalised people with COVID-19 (International Severe Acute Respiratory and emerging Infections Consortium (ISARIC)/WHO Clinical Characterization Protocol for Severe Emerging Infections UK study), 93 with influenza A (Mechanisms of Severe Acute Influenza Consortium (MOSAIC) study, during the 2009–2010 H1N1 pandemic) and 139 survivors of non-selected critical illness (prior to the COVID-19 pandemic). Total 25(OH)D was measured by liquid chromatography-tandem mass spectrometry. Free 25(OH)D was measured by ELISA in COVID-19 samples. Outcome measures: Receipt of invasive mechanical ventilation (IMV) and in-hospital mortality. Results: Vitamin D insufficiency (total 25(OH)D 25–50 nmol/L) and deficiency (<25 nmol/L) were prevalent in COVID-19 (29.3% and 44.4%, respectively), influenza A (47.3% and 37.6%) and critical illness survivors (30.2% and 56.8%). In COVID-19 and influenza A, total 25(OH)D measured early in illness was lower in patients who received IMV (19.6 vs 31.9 nmol/L (p<0.0001) and 22.9 vs 31.1 nmol/L (p=0.0009), respectively). In COVID-19, biologically active free 25(OH)D correlated with total 25(OH)D and was lower in patients who received IMV, but was not associated with selected circulating inflammatory mediators. Conclusions: Vitamin D deficiency/insufficiency was present in majority of hospitalised patients with COVID-19 or influenza A and correlated with severity and persisted in critical illness survivors at concentrations expected to disrupt bone metabolism. These findings support early supplementation trials to determine if insufficiency is causal in progression to severe disease, and investigation of longer-term bone health outcomes
26th Annual Computational Neuroscience Meeting (CNS*2017): Part 3 - Meeting Abstracts - Antwerp, Belgium. 15–20 July 2017
This work was produced as part of the activities of FAPESP Research,\ud
Disseminations and Innovation Center for Neuromathematics (grant\ud
2013/07699-0, S. Paulo Research Foundation). NLK is supported by a\ud
FAPESP postdoctoral fellowship (grant 2016/03855-5). ACR is partially\ud
supported by a CNPq fellowship (grant 306251/2014-0)
- …