1,500 research outputs found

    An illumination-invariant phase-shifting algorithm for three-dimensional profilometry

    Get PDF
    Image Processing: Machine Vision Applications V, Burlingame, California, USA, 22 January, 2012Uneven illumination is a common problem in real optical systems for machine vision applications, and it contributes significant errors when using phase-shifting algorithms (PSA) to reconstruct the surface of a moving object. Here, we propose an illumination-reflectivity-focus (IRF) model to characterize this uneven illumination effect on phase-measuring profilometry. With this model, we separate the illumination factor effectively, and then formulate the phase reconstruction as an optimization problem. To simplify the optimization process, we calibrate the uneven illumination distribution beforehand, and then use the calibrated illumination information during surface profilometry. After calibration, the degrees of freedom are reduced. Accordingly, we develop a novel illumination-invariant phase-shifting algorithm (II-PSA) to reconstruct the surface of a moving object under an uneven illumination environment. Experimental results show that the proposed algorithm can improve the reconstruction quality both visually and numerically. Therefore, using this IRF model and the corresponding II-PSA, not only can we handle uneven illumination in a real optical system with a large field of view (FOV), but we also develop a robust and efficient method for reconstructing the surface of a moving object. © 2012 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).link_to_subscribed_fulltextpublished_or_final_versio

    Polymorphism of the pig-implantation protein 3 (preis3) gene and its association with litter size traits

    Get PDF
    The pre-implantation protein 3 (prei3), which might play a role in pre-implantation embryogenesis, is one of the promising candidate genes for litter size traits in pigs. In this study, a single nucleotide polymorphism (SNP: T802G) in intron 6 of the pig prei3 gene was detected and a genotyping assay for this SNP was developed. An association study for this SNP with litter size was performed in two independent populations. One population consisted of crossbred sows derived from Landrace, Large White, Chinese Tongcheng and/or Chinese Meishan (Line DIV). The other population constituted of crossbred animals derived from Chinese Qingping and Duroc (QD). Statistical analysis demonstrated that, in first parity, 2.65 more piglets were born and 3.82 more piglets were born alive in sows in Line DIV with genotype TT than with genotype GG. For second and subsequent litters, in both the DIV and QD lines there were significant differences in the number of piglets born alive between TG and GG sows, with the TG sows producing more piglets born alive than the GG sows. These results suggest that the prei3 SNP is significantly associated with litter size in the two populations studied, and could be useful in selection for increasing litter size in pigs. Further investigations on more pig populations with large sample sizes are needed to confirm this. South African Journal of Animal Science Vol. 36(3) 2006: 209-21

    Realtime Deformation of Constrained Meshes Using GPU

    Get PDF
    Constrained meshes play an important role in freeform architectural design, as they can represent panel layouts on freeform surfaces. It is challenging to perform realtime manipulation on such meshes, because all constraints need to be respected during the deformation while the shape quality needs to be maintained. This usually leads to nonlinear constrained optimization problems, which are challenging to solve in real time. In this paper, we present a GPU-based shape manipulation tool for constrained meshes, using the parallelizable algorithm proposed in [8]. We discuss the main challenges and solutions for the GPU implementation, and provide timing comparison against a CPU implementation of the algorithm. Our GPU implementation significantly outperforms the CPU version, allowing realtime handle-based deformation for large constrained meshes

    Association of IGF-I gene polymorphisms with milk yield and body size in Chinese dairy goats

    Get PDF
    The association of IGF-I gene polymorphisms with certain traits in 708 individuals of two Chinese dairy-goat breeds (Guanzhong and Xinong Saanen) was investigated. Polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) and DNA sequencing methods were employed in screening for genetic variation. Two novel mutations were detected in the 5'-flanking region and in intron 4 of IGF-I gene, viz., g.1617 G > A and g.5752 G > C (accession D26119.2), respectively. The associations of the g.1617 G > A mutation with milk yield and the body size were not significant (p > 0.05). However, in the case of g.5752 G > C, Xinong Saanen dairy goats with the CG genotype presented longer bodies (p < 0.05). Chest circumference (p < 0.05) was larger in Guanzhong goats with the GG genotype. In Xinong Saanen dairy goats with the CC genotype, milk yields were significantly higher during the first and second lactations (p < 0.05). Hence, the g.5752 G > C mutation could facilitate association analysis and serve as a genetic marker for Chinese dairy-goat breeding and genetics

    Dynamics of a Quantum Phase Transition and Relaxation to a Steady State

    Full text link
    We review recent theoretical work on two closely related issues: excitation of an isolated quantum condensed matter system driven adiabatically across a continuous quantum phase transition or a gapless phase, and apparent relaxation of an excited system after a sudden quench of a parameter in its Hamiltonian. Accordingly the review is divided into two parts. The first part revolves around a quantum version of the Kibble-Zurek mechanism including also phenomena that go beyond this simple paradigm. What they have in common is that excitation of a gapless many-body system scales with a power of the driving rate. The second part attempts a systematic presentation of recent results and conjectures on apparent relaxation of a pure state of an isolated quantum many-body system after its excitation by a sudden quench. This research is motivated in part by recent experimental developments in the physics of ultracold atoms with potential applications in the adiabatic quantum state preparation and quantum computation.Comment: 117 pages; review accepted in Advances in Physic

    Systemic Risk and Default Clustering for Large Financial Systems

    Full text link
    As it is known in the finance risk and macroeconomics literature, risk-sharing in large portfolios may increase the probability of creation of default clusters and of systemic risk. We review recent developments on mathematical and computational tools for the quantification of such phenomena. Limiting analysis such as law of large numbers and central limit theorems allow to approximate the distribution in large systems and study quantities such as the loss distribution in large portfolios. Large deviations analysis allow us to study the tail of the loss distribution and to identify pathways to default clustering. Sensitivity analysis allows to understand the most likely ways in which different effects, such as contagion and systematic risks, combine to lead to large default rates. Such results could give useful insights into how to optimally safeguard against such events.Comment: in Large Deviations and Asymptotic Methods in Finance, (Editors: P. Friz, J. Gatheral, A. Gulisashvili, A. Jacqier, J. Teichmann) , Springer Proceedings in Mathematics and Statistics, Vol. 110 2015

    Cytoplasmic p53 couples oncogene-driven glucose metabolism to apoptosis and is a therapeutic target in glioblastoma.

    Get PDF
    Cross-talk among oncogenic signaling and metabolic pathways may create opportunities for new therapeutic strategies in cancer. Here we show that although acute inhibition of EGFR-driven glucose metabolism induces only minimal cell death, it lowers the apoptotic threshold in a subset of patient-derived glioblastoma (GBM) cells. Mechanistic studies revealed that after attenuated glucose consumption, Bcl-xL blocks cytoplasmic p53 from triggering intrinsic apoptosis. Consequently, targeting of EGFR-driven glucose metabolism in combination with pharmacological stabilization of p53 with the brain-penetrant small molecule idasanutlin resulted in synthetic lethality in orthotopic glioblastoma xenograft models. Notably, neither the degree of EGFR-signaling inhibition nor genetic analysis of EGFR was sufficient to predict sensitivity to this therapeutic combination. However, detection of rapid inhibitory effects on [18F]fluorodeoxyglucose uptake, assessed through noninvasive positron emission tomography, was an effective predictive biomarker of response in vivo. Together, these studies identify a crucial link among oncogene signaling, glucose metabolism, and cytoplasmic p53, which may potentially be exploited for combination therapy in GBM and possibly other malignancies

    Detailed error analysis for a fractional adams method with graded meshes

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s11075-017-0419-5We consider a fractional Adams method for solving the nonlinear fractional differential equation \, ^{C}_{0}D^{\alpha}_{t} y(t) = f(t, y(t)), \, \alpha >0, equipped with the initial conditions y(k)(0)=y0(k),k=0,1,…,⌈α⌉−1y^{(k)} (0) = y_{0}^{(k)}, k=0, 1, \dots, \lceil \alpha \rceil -1. Here α\alpha may be an arbitrary positive number and ⌈α⌉ \lceil \alpha \rceil denotes the smallest integer no less than α\alpha and the differential operator is the Caputo derivative. Under the assumption \, ^{C}_{0}D^{\alpha}_{t} y \in C^{2}[0, T], Diethelm et al. \cite[Theorem 3.2]{dieforfre} introduced a fractional Adams method with the uniform meshes tn=T(n/N),n=0,1,2,…,Nt_{n}= T (n/N), n=0, 1, 2, \dots, N and proved that this method has the optimal convergence order uniformly in tnt_{n}, that is O(N−2)O(N^{-2}) if α>1\alpha > 1 and O(N−1−α)O(N^{-1-\alpha}) if α≤1\alpha \leq 1. They also showed that if \, ^{C}_{0}D^{\alpha}_{t} y(t) \notin C^{2}[0, T], the optimal convergence order of this method cannot be obtained with the uniform meshes. However, it is well known that for y∈Cm[0,T]y \in C^{m} [0, T] for some m∈Nm \in \mathbb{N} and 0<α1 0 < \alpha 1, we show that the optimal convergence order of this method can be recovered uniformly in tnt_{n} even if \, ^{C}_{0}D^{\alpha}_{t} y behaves as tσ,0<σ<1t^{\sigma}, 0< \sigma <1. Numerical examples are given to show that the numerical results are consistent with the theoretical results
    • …
    corecore